
INTRODUCTION 

Colorectal cancer (CRC) is the second leading cause of can-
cer-related mortality worldwide, with the number of cases es-
timated to increase to 3.2 million by 2040.1,2 Population-based 
CRC screenings can improve patient outcomes through early 
diagnosis and treatment, but have led to higher incidences of 
T1 (early) CRC.3,4 T1 CRC can be grouped based on the inva-
sion depth into the mucosa (Tis), superficial submucosa (T1a 
<1,000 µm submucosal invasion), and deep submucosa (T1b 
≥1,000 µm submucosal invasion). Although endoscopic resec-
tion is the treatment modality of choice for superficial colorec-
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potential application and barriers that may limit its generalizability and clinical utility. 
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tal neoplasms,5,6 further surgical resection may be recommend-
ed based on the presence of risk factors after a full histological 
evaluation of the resected specimen.7-9 This is due to the risk of 
lymph node metastasis (LNM) in T1 CRC. The histological risk 
factors include lymphovascular invasion, tumor budding, and 
histological grade in addition to the depth of invasion.10-15 How-
ever, the risk of LNM in T1 CRC is estimated to be between 6% 
to 14%,16-19 which indicates that the postoperative morbidity 
and mortality associated with surgery for T1 CRC is avoid-
able.20,21 As such, accurately predicting the depth of invasion on 
the initial colonoscopy and consistent and precise histological 
specimen reports are crucial in patients with T1 CRC. 

Artificial intelligence (AI) has been extensively studied in the 
context of polyp detection and, to a lesser extent, in the predic-
tion of polyp histology during colonoscopy.22-24 Computer-aid-
ed diagnostic (CAD) systems that perform these functions are 
commercially available. However, predicting the risk of LNM 
is a complex task in CAD systems. Unlike CAD systems for 
the detection and prediction of polyp histology, determining 
the presence or absence of LNM in T1 CRC requires the input 
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of different forms of data from various sources. These include 
predicting the depth of invasion during colonoscopy, analyzing 
resected specimens for histology, and interpreting radiological 
images from cross-sectional imaging, which are sometimes per-
formed in the context of rectal cancer. 

This narrative review aimed to summarize the current evi-
dence and clinical applications of AI in the prediction of LNM 
in T1 CRC. The role of AI in colonoscopy and histological ex-
amination will be examined, and the merits and limitations of 
its role in predicting LNM in T1 CRC will be discussed. 

METHODS 

A systematic search of the PubMed (Medline), Embase, and 
IEEE Xplore electronic databases was performed from the data-
base inception up to November 18, 2022 (Fig. 1). The key search 
terms were AI, deep learning (DL), machine learning (ML), 
computer-aided diagnosis, T1 colon cancer, T1 rectal cancer, T1 
CRC, and LNM. Electronic searches were supplemented with 
manual searches of the references of all the retrieved studies to 
identify other relevant publications. Only studies published in 
English were included in this review. 

Common terms and definitions of the clinical and technical 
endpoints used in studies evaluating AI in endoscopy have al-
ready been described in our earlier review and other published 
papers in this field.24-31 

AI PREDICTION OF THE DEPTH OF 
INVASION IN T1 CRC DURING ENDOSCOPY 

The depth of invasion is a known risk factor for LNM in T1 
CRC. Traditionally, predicting the depth of invasion during 
colonoscopy depends largely on the availability and use of im-
age-enhanced endoscopy (IEE),32 with or without magnifica-
tion,33-38 to accurately classify the neoplastic potential of polyps 
based on the surface pattern and vessel appearance. The overall 
morphological appearance of colorectal tumors is also a known 
predictor of the depth of invasion, with features such as large 
size, pseudo-depressed or depressed areas, and the presence of 
large nodules indicative of a higher risk for deep and multifo-
cal submucosal invasion.39,40 However, IEE systems may not be 
readily available at all centers. Furthermore, structured training 
and experience are required even when these resources are 
available, resulting in wide interobserver variability.41,42 

Early studies incorporating AI for CAD in CRC focused 
on differentiating invasive cancers from the normal colonic 
mucosa or adenomas.43 Some of these studies utilized endocy-
toscopy and confocal laser endomicroscopy with encouraging 
results,44,45 but were limited in that they could not accurately 
assess the depth of invasion of T1 CRC. Endocytoscopy and 
confocal laser endomicroscopy may not be practical in wide-
scale applications, as additional training and highly specialized 
equipment are required, even with a CAD function to alleviate 
the need for training. These imaging modalities require the 
endoscopist to focus on a very small area of the tumor at a time, 
making them time-consuming and labor-intensive to use in 
clinical settings. Furthermore, the CAD function in these stud-
ies was not trained to consider the macroscopic features of the 
tumor of interest. Lui et al.46 trained an AI image classifier that 
could predict curative endoscopic resection in large colonic 
tumors with an overall accuracy of 85.5% and an area under 
the receiver operating characteristic (AUROC) curve of 0.837, 
which was similar to that of a senior endoscopist who had per-
formed more than 200 IEE colonoscopies. However, the image 
classifier was unsuitable for clinical use because it required a se-
nior endoscopist to manually map the region of interest before 
the AI image classifier could make a prediction. 
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Fig. 1. Preferred Reporting Items for Systematic Reviews and Me-
ta-Analyses diagram of the literature search. AI, artificial intelligence; 
CRC, colorectal cancer.
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To overcome these technical difficulties, Luo et al.47 added a 
tumor-localization branch to a deep convolutional neural net-
work (CNN) model developed by modifying the GoogLeNet 
architecture. This enabled the CNN model to highlight the 
tumor area by exploiting the localization features of class acti-
vation maps while preserving useful information that lies out-
side the tumor area. The classification branch then predicts the 
histological invasiveness in the tumor area. The AI-enhanced 
attention-guided white-light colonoscopy (AEWL) model 
achieved an overall accuracy of 91.1% (95% confidence interval 
[CI], 89.6%–92.4%), with an AUROC curve of 0.970 (95% CI, 
0.962–0.978) in predicting non-invasive and superficially inva-
sive colorectal tumors, which in this study were defined as Tis 
and T1a lesions. The corresponding sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value (NPV) 
were 91.2, 91.0, 87.6, and 93.7%, respectively. The performance 
of the AEWL model was evaluated against that of experienced 
endoscopists using white-light and IEE with magnification. 
The results of this study showed that the accuracy of the AEWL 
model in estimating the depth of CRC invasion was comparable 
to that of experienced endoscopists (91.1% vs. 92.6%). How-
ever, when discriminating between T1b CRC and superficially 
invasive CRC, the sensitivity and AUROC of the AEWL model 
were 51.5% and 0.637, respectively. When images of advanced 
CRC were added to the training dataset, the sensitivity and AU-
ROC improved by 65.3% and 0.729, respectively. The authors 
hypothesized that the surface signatures of T1b and advanced 
CRC may share certain similarities; hence, the addition of ad-
vanced CRC images to the training dataset could improve the 
performance of the DL model. 

The AEWL model is a fully automated CAD system that 
utilizes non-magnified white-light images during colonoscopy, 
circumventing the need for IEE images in the training of CAD 
systems. This is arguably clinically more useful, as white light 
colonoscopy is the most widely available imaging modality 
compared with electronic or dye-based IEE. Tokunaga et al.48 

developed a CAD system using non-magnified white-light 
colonoscopy images and a single-shot multibox detector to 
differentiate advanced CRC or CRC with submucosal invasion 
≥1,000 µm, which are not amenable to endoscopic resection, 
from superficially invasive and mucosal lesions, which could be 
resected endoscopically. The accuracy and AUROC curves for 
predicting endoscopically resectable lesions in this study were 
90.3% and 0.913, respectively. The CAD system had similar 
sensitivity, specificity, and accuracy as expert endoscopists and 

was found to be superior to trainee endoscopists. However, in a 
subgroup analysis of T1b CRC, the rate of correct diagnosis was 
only 51.2%, although this outperformed that of the trainees and 
experts (31.5% and 41.1%; p<0.01, and p=0.047, respectively). 
This drop-off in accuracy in T1b CRC was similar to that de-
scribed earlier for the AEWL model.47 

In a retrospective study using non-magnified white-light im-
ages, Ito et al.49 built a CNN specifically to assist in the diagnosis 
of T1b CRC. The authors augmented the data by adding flipped 
and rotated images, with up to six times as many images as in 
the original being used as input for training the CNN, while 
excluding images deemed unsuitable for learning in each aug-
mentation process. A 3-fold cross validation method was used, 
which excluded images that were altered for data augmentation. 
Using these methods, the study reported an accuracy of 81.2% 
and an AUROC of 0.871 for differentiating T1b from T1a and 
Tis CRC. The reported sensitivity and specificity were 89% 
and 68%, respectively. In a separate study by Nakajima et al.,50 
non-magnified white-light images of early stage CRC labelled 
only with the T-stage were used to train a CNN that could 
output a probability level for T1b CRC. Data augmentation 
was applied with rotation, resizing, saturation, and exposure 
adjustments to increase the number of training images from the 
original. The CNN model was assessed on an independent test 
dataset from an external hospital, with a threshold of 95% used 
to predict T1b CRC (at least one image with a probability score 
of >0.95 was considered a positive predictor for T1b CRC). The 
specificity, which was the main outcome of this study, was 87%. 
This was superior to the specificity of the two novice endosco-
pists (48% and 22%, respectively) but inferior to that of expert 
endoscopists (100% and 96%, respectively). The CAD system 
accuracy in predicting T1b CRC was 78% and 85% for CRC 
≤20 mm and >20 mm, respectively. A major limitation of this 
study was that the test dataset did not include T1a lesions; thus, 
we were unable to demonstrate the CAD system effectivity at 
differentiating the threshold depth of submucosal invasion, 
which defines T1a and T1b CRC. 

In a study by Lu et al.,51 white-light and IEE images were 
combined into image pairs for training Endo-CRC, a 2-model 
neural network consisting of white-light and IEE convolution 
branches, along with a feature fusion convolution block and 
classifier. Testing of the Endo-CRC system was conducted on 
video clips that ranged from 10 to 19 seconds and comprised 
white-light and IEE images from an external test dataset. Based 
on the test results from 35 videos, the authors reported an ac-
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curacy of 100% in differentiating unresectable deeply invasive 
T1 CRC from resectable colorectal tumors. The speed of the 
Endo-CRC system was at least 21 image pairs per second, based 
on a real-time video analysis. While the results were encourag-
ing when tested on colonoscopy videos, the Endo-CRC system 
is likely not ready for routine clinical use, as our experience 
has shown that video output from high-definition colonoscopy 
systems requires a processing speed of approximately 50 frames 
per second.24 Table 1 summarizes the current studies using AI 
to predict the depth of invasion in TI-CRC.46-51 

AI IN PREDICTION OF LNM ON HISTOLOGY 

Following the endoscopic resection of T1 CRC, the histological 
specimen was carefully examined for risk factors indicating the 
possibility of LNM to determine if the endoscopic resection was 
curative. In a clinical setting, the risk of LNM may be consid-
ered at the point of diagnosis of T1 CRC on endoscopy, when 
a decision on endoscopic resectability needs to be made, or 
after endoscopic resection, when the clinician needs to decide 
whether the patient requires additional surgery based on the 
histological findings of the resected specimen. The histologi-
cal factors predicting LNM after endoscopic resection include 
the depth of invasion, tumor budding, histological grade, and 
lymphovascular invasion.10-12,52 However, the interobserver 

agreement between pathologists in T1 CRC for lymphovascular 
invasion has been shown to vary. This is further exacerbated by 
the fact that immunostaining may not be routinely performed 
in all centers.53,54 Furthermore, interobserver agreement has 
been reported to be even lower in the assessment of the depth 
of invasion55 and tumor budding.56-58 There is also conflicting 
evidence on the magnitude of the risk of LNM posed by the 
depth of invasion, with studies suggesting that this may not be 
a crucial risk factor for LNM. DL models have been studied in 
this context to provide an objective “2nd reader” function and 
for automated processing of histology slides in T1 CRC for pre-
dicting LNM.59-61 

Conventional light microscopy is considered the “gold stan-
dard” in surgical pathology62,63; however, progress and innova-
tions in digital imaging inspired by telepathology have led to 
the development of whole-slide imaging (WSI).64,65 WSI enables 
the digitalization of hematoxylin and eosin (H&E) slides, which 
can be stored, shared, and viewed by different pathologists. The 
standardization of H&E staining into a uniform digital format 
also means that DL algorithms can be deployed in histological 
image analysis.66 This has led to the development of AI systems 
that can robustly process large amounts of WSI for the diagno-
sis and prediction of outcomes in CRC.67 One study reported an 
AUROC curve of 0.988 for accurately diagnosing CRC on WSI, 
which was higher than that of expert pathologists (0.970) and 

Table 1. Summary of studies using CAD during endoscopy to predict depth of invasion in CRC 

Study Year  
published

AI  
instrument Data set Sensitivity 

(%)
Specificity 

(%)
PPV  
(%)

NPV  
(%)

AUROC 
(%)

Accuracy  
(%)

Lui et al.46,a) 2019 CNN 8,567 NBI and 
WLI images

94.6  
(for NBI)

92.3  
(for NBI)

98.8  
(for NBI)

72.0  
(for NBI)

0.934 94.3  
(for NBI)

Luo et al.47 2021 CNN 9,368 Images (WLI) 91.2 91.0 87.6 93.7 0.970 91.1
Tokunaga et al.48,b) 2021 Single shot multi-

box detector
3,442 Images (WLI) 96.7 75 90.2 90.5 0.913 90.3

Ito et al.49,c) 2019 CNN 190 Conventional 
WLI images

67.5 89.0 - - 0.871 81.2

Nakajima et al.50,d) 2020 CNN 1,917 Plain endo-
scopic images

81 87 85 83 0.888 84

Lu et al.51,e) 2022 CNN 820,348 WLI and 
IEE images, 35 
videos

90 94.2 64.7 98.8 0.956 93.8

CAD, computer-aided diagnostic; CRC, colorectal cancer; AI, artificial intelligence; PPV, positive predictive value; NPV, negative predictive value; AU-
ROC, area under the receiver operating characteristic; CNN, Convolutional neural network; NBI, narrow-band imaging; WLI, white-light imaging; IEE, 
image-enhanced endoscopy.
a)Prediction endoscopically curable lesions (includes sessile serrated adenomas, tubular adenoma with or without villous component, intramucosal ade-
nocarcinoma, and T1a lesions). b)Differentiation between endoscopically curable lesions (adenomas, high-grade dysplasia, CRC with submucosal inva-
sion <1,000 µm) vs. CRC with submucosal invasion >1,000 µm or advanced CRC. c)Prediction of Tis/T1a lesions vs T1b lesions. d)Prediction of T1b CRC. 
e)Prediction of lesions with low-grade dysplasia, high-grade dysplasia, intramucosal cancer and CRC with submucosal invasion <1,000 µm vs. CRC with 
submucosal invasion ≥1,000 µm and advanced CRC.

Li et al. AI in management of T1 colorectal cancer
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could potentially be generalized for clinical use.68 To overcome 
the tedious and time-consuming process of examining speci-
mens for abnormal areas on histology, Gupta et al.69 examined 
the use of DL models for classification and localization to de-
termine regions of interest for pathologists to focus on in CRC. 
The study reported an AUROC curve of 0.97 using a pretrained 
Inception-v3 model and an AUROC curve of 0.99 with a cus-
tomized Inception-ResNet-v2 Type 5 (IR-v2 Type 5) model. 
The prediction of LNM in CRC using DL models and WSI has 
also been studied.70 In a German study of 2,431 patients from 
the German DACHS cohort, a slide-based artificial intelligence 
predictor (SBAIP) score was combined with a logistic regres-
sion analysis of clinical data and externally tested in a different 
cohort of patients. The SBAIP had an AUROC curve of 0.612 
in predicting LNM in CRC; although, it must be noted that the 
study included different stages of CRC and the small number of 
T1 CRC precluded a subgroup analysis. 

Kudo et al. conducted a multicenter study to evaluate the ac-
curacy of an artificial neural network (ANN) model for predict-
ing LNM in patients with T1 CRC.71 Demographic and clinical 
data, such as patient age, sex, tumor size, location, and mor-
phology, were combined with pathological data, such as lym-
phovascular invasion and grade, from 3,134 patients who had 
undergone endoscopic or surgical resection for T1 CRC in Ja-
pan. These clinicopathological data were used to train the ANN 
model, which was assessed against the current United States 
(US)13,14,72 and the Japanese Society for Cancer of the Colon and 
Rectum (JSCCR) 10 guidelines during external validation on 
a test dataset. The ANN model identified patients with LNM 
after initial endoscopic resection with an AUROC curve of 0.84, 
which outperformed the US (AUROC curve 0.77, p=0.005) and 
Japanese (AUROC curve 0.61, p<0.001) guidelines. However, 
histological factors, such as the depth of invasion and tumor 
budding, were not included in the training of the ANN model.  

In a retrospective study of 316 patients with T1 CRC, Kang 
et al.73 evaluated the performance of the least absolute shrink-
age and selection operator (LASSO) model with the JSCCR 
guidelines for prediction LNM.10 The ML model incorporates 
information from immunohistochemical staining and tu-
mor-infiltrating lymphocytes (TIL), which mediate local host 
antitumor immunity, with histological factors such as depth of 
submucosal invasion, tumor budding, histological grade, and 
lymphovascular invasion. The AUROC curve in the valida-
tion set showed better accuracy in predicting LNM using the 
LASSO model than using the Japanese guidelines (0.765 vs. 

0.518, p=0.003). An earlier Dutch study identified histological 
factors of lymphovascular invasion, Haggitt level 4 invasion, 
muscularis mucosa type B, poorly differentiated clusters, and 
tumor budding as differentiating factors for predicting LNM in 
patients with pedunculated T1 CRC.74 Using these histological 
factors, the LASSO model was evaluated in a large multicenter 
Dutch cohort of 708 patients with pedunculated T1 CRC and 
showed an AUROC of 0.83, which was superior to conventional 
models based on American/European and Japanese guidelines 
(AUROC curves of 0.67 and 0.64, respectively). Takamatsu et 
al.75 conducted a retrospective single-center study in which 
histological images from 397 patients with T1 CRC were used 
for supervised ML. The AUROC curve for the prediction of 
LNM was 0.938, using an optimal cut-off sensitivity of 80.0% 
and specificity of 94.5% in the ML model. Cross validation was 
performed with repeated random subsampling to generate 12 
validation datasets, with an average AUROC curve of 0.822 
(95% CI, 0.767–0.938). More recently, an attention-based DL 
model by Song et al.76 achieved an AUROC of 0.844 for predict-
ing LNM in the test set for patients with a submucosal invasion 
of 1,000 to 2,000 µm. When the performance of this model 
was compared against the prediction of LNM using the JSCCR 
guidelines,10 the DL model was able to avoid 16.1% of unnec-
essary additional surgeries in this group of patients while not 
missing any patients with LNM. 

To date, most studies on DL for predicting the risk of LNM 
on WSI have analyzed full histological specimens post-endo-
scopic or surgical resection. However, in a study by Kasahara 
et al.,77 ML was used to train a model to predict the risk of 
LNM in biopsy specimens. The investigators analyzed the 
morphological features of cell nuclei extracted from WSI to 
create an LNM risk model with the aim of directing patients 
with T1 CRC to appropriate treatments based on their risk of 
LNM determined from pre-treatment biopsy specimens. The 
study demonstrated an accuracy of 80% to 85% in predicting 
LNM on biopsy specimens. In a separate study conducted in 
two large population-based cohorts of patients with T1 and T2 
CRC, a DL system was used to direct human pathology experts 
to areas deemed to contain features highly predictive of LNM in 
the WSI of the primary tumor and surrounding tissues.78 An in-
teresting finding from this study was that the hybrid application 
of human observers and DL-identified inflamed adipose tissue 
was the highest predictor of LNM. This has not been described 
as a known histological risk factor for LNM in T1 CRC and 
highlights the potential for using AI to discover new biomark-
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ers for CRC progression. Table 2 summarizes the current stud-
ies using AI in histopathology for predicting the risk of LNM in 
T1 CRC.70,71,73,75-78 

DL has also been studied for the detection of microsatellite 
instability, mismatch repair genes, and other genetic alterations 
in CRC.79-81 This may highlight CRC biomarkers that can pre-
dict LNM when integrated into clinical decision-making tools. 
However, these DL models are still in the early stages of devel-
opment and require extensive external validation. They also do 
not directly address the issue of LNM prediction in T1 CRC 
and are thus beyond the scope of this review. 

CURRENT LIMITATIONS OF STUDIES ON AI 
IN T1 CRC 

Despite the advances and reported outcomes of AI studies in 
predicting of depth of invasion and LNM to guide the manage-
ment of T1 CRC, there are still major gaps that limit its gener-
alizability and clinical application. DL, a subbranch of the ML 
field, is the most commonly used tool in the literature on AI 
and colonoscopy.25,82 In this method, multiple linear and non-
linear processing units are arranged in a deep architecture to 

extract useful information automatically and construct a model 
that generates the required output. DL models perform these 
tasks without requiring predefined features, which is character-
istic of conventional ML techniques.25 The DL studied during 
colonoscopy is well suited for simple tasks such as polyp de-
tection or polyp histology, as data from a single source of input 
(colonoscopy image projected from the processor) are passed 
through multiple layers in a neural network to produce a nar-
row output that is often binary (polyp or no polyp; hyperplastic 
or neoplastic, respectively). However, clinical decision-making 
regarding LNM in T1 CRC depends on more than one factor. 
The analysis of endoscopy videos during colonoscopy for depth 
of invasion, histopathology slides or reports on risk factors of 
LNM, radiological images and clinical and demographic char-
acteristics of the population, mean that more than one source of 
input is available in T1 CRC cases (Fig. 2). No single DL mod-
el can accommodate the processing of all these information 
sources, such as how a clinician processes information during 
decision-making to obtain the required output in the presence 
or absence of LNM. Moreover, DL models require a large num-
ber of cases to build.83 When the relevant specimens available 
for analyses are limited—for instance, in T1b CRC47-50,77—the 

Prediction of LNM in 
T1 CRC

Colonoscopy videos/
endoscopy reports

Depth of 
invasion?

Depth of 
invasion?

Tumour 
budding?

Abnormal 
lymph nodes 
on radiology?

Risk stratification  
(e.g., by age, gender, family history)

LVI?

WSI/histology reports

CT/MRI images/radiology 
reports

Demographic and clinical 
information

Role of Al  
system

Input Subfield of AI Output

ML, neural networks, NLP

Neural networks, computer vision, NLP

ML, NLP

ML, NLP

Fig. 2. Schematic diagram illustrating varied sources of input and differing outputs to reach a clinical decision on lymph node metastasis (LNM) 
in T1 colorectal cancer (CRC). AI, artificial intelligence; ML, machine learning; NLP, natural language processing; WSI, whole slide imaging; 
CT, computed tomography; MRI, magnetic resonance imaging; LVI, lymphovascular invasion.
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results of the models may be inconclusive at best, and in some 
instances investigators may need to rely on an ML method in-
stead77 because of its inherent limitations. 

The avoidance of overfitting a DL model and its reliability is 
highly dependent on the quality, number, and variability of the 
images used for training, as well as the demographic and clin-
ical features of the populations from which the data are gath-
ered. Most published studies on DL in T1 CRC acknowledge 
the limitations of their datasets, as the number of high-quality 
images of T1 CRC datasets is smaller and may lack detailed 
annotations compared to polyp databases used in training DL 
models for polyp detection and characterization. This is also 
reflected in the studies that may not contain sufficient or even 
any T1a CRC in the datasets used for validation, which prevents 
subgroup analysis and comparisons from obtaining clinically 
meaningful data for differentiating T1a from T1b CRC. Fur-
thermore, the training, validation, and test datasets are often 
derived from populations in the same geographical location and 
are sometimes split from the same overall dataset in a single 
institution, leading to a risk of selection bias and overfitting due 
to the probability of significant overlaps in clinicopathological 
features when the baseline population is identical.25 

In addition, most studies evaluating CAD systems in T1 
CRC during endoscopy are retrospective and utilize still im-
ages, which may be difficult to translate into clinical practice 
when the real-time prediction of the LNM risk during colo-
noscopy is required. When video clips are used for validation, 
the speed of the DL model may be inadequate for routine 
clinical use in high-definition systems. Although recent stud-
ies have almost uniformly assessed DL models (as opposed to 
conventional ML and other statistical methods) for the pre-
diction of LNM in T1 CRC, there remains a lack of standard-
ization in reporting methodologies and results, which may 
make meaningful comparisons of different CAD systems and 
meta-analyses of the available data difficult. Studies on AI that 
address key questions31 regarding its use in T1 CRC, as well 
as a minimum reporting standard27,28,30 such as that required 
for randomized controlled trials, are needed to overcome this 
discrepancy. 

Similarly, in the fields of DL and WSI, the quality of the WSI 
used as input for training DL models is crucial for its accuracy 
in predicting LNM in T1 CRC. Owing to the high dimension-
ality of the data, the original image may need to be downsized, 
where pixel information may be lost or broken down into mul-
tiple smaller patches for information extraction, which comes 

at the expense of spatial information.84 As highlighted in the 
section on histology, the variations in interobserver variability 
for tumor budding and depth of invasion among pathologists, 
coupled with the controversies surrounding the role of depth 
of invasion in predicting the actual risk of LNM, translate into 
uncertainty in the “ground truth” and weight assignment in the 
training of DL models for use in predicting LNM from T1 CRC 
samples. 

In practice, determining the risk of LNM in T1 CRC depends 
on the demographic and clinical profile of the patient, predict-
ed depth of invasion prior to resection, detailed pathological 
assessment after resection, and preoperative lymph node stag-
ing on CT or MRI—not on any of these factors in isolation. 
The available literature on DL in T1 CRC focuses mainly on 
one of the aforementioned factors, with statistical regression or 
conventional ML models used to combine additional patient 
information in some studies. For a DL model to be accurate and 
clinically relevant, at least two of these factors must be incor-
porated. This involves the insertion of additional branches into 
ANN algorithms and the use of natural language processing to 
extract information from endoscopy, histology, and radiology 
reports,85 which is computationally expensive and technically 
demanding. 

CONCLUSIONS 

The field of DL in the management of T1 CRC is developing 
rapidly, with results showing its potential to accurately predict 
the depth of invasion and risk of LNM during endoscopy and 
pathological assessment. However, more data from external val-
idation of independent samples from different centers, as well 
as further enhancements to DL models to integrate clinically 
significant information, are necessary before DL can be applied 
for routine clinical use. 
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