Skip Navigation
Skip to contents

Clin Endosc : Clinical Endoscopy

OPEN ACCESS

Author index

Page Path
HOME > Browse articles > Author index
Search
Youngbae Hwang 2 Articles
Recent Development of Computer Vision Technology to Improve Capsule Endoscopy
Junseok Park, Youngbae Hwang, Ju-Hong Yoon, Min-Gyu Park, Jungho Kim, Yun Jeong Lim, Hoon Jai Chun
Clin Endosc 2019;52(4):328-333.   Published online February 21, 2019
DOI: https://doi.org/10.5946/ce.2018.172
AbstractAbstract PDFPubReaderePub
Capsule endoscopy (CE) is a preferred diagnostic method for analyzing small bowel diseases. However, capsule endoscopes capture a sparse number of images because of their mechanical limitations. Post-procedural management using computational methods can enhance image quality. Additional information, including depth, can be obtained by using recently developed computer vision techniques. It is possible to measure the size of lesions and track the trajectory of capsule endoscopes using the computer vision technology, without requiring additional equipment. Moreover, the computational analysis of CE images can help detect lesions more accurately within a shorter time. Newly introduced deep leaning-based methods have shown more remarkable results over traditional computerized approaches. A large-scale standard dataset should be prepared to develop an optimal algorithms for improving the diagnostic yield of CE. The close collaboration between information technology and medical professionals is needed.

Citations

Citations to this article as recorded by  
  • A Review of Biomedical Devices: Classification, Regulatory Guidelines, Human Factors, Software as a Medical Device, and Cybersecurity
    Felix Tettey, Santosh Kumar Parupelli, Salil Desai
    Biomedical Materials & Devices.2024; 2(1): 316.     CrossRef
  • Real‐time small bowel visualization quality assessment in wireless capsule endoscopy images using different lightweight embeddable models
    Vahid Sadeghi, Alireza Mehridehnavi, Yasaman Sanahmadi, Sajed Rakhshani, Mina Omrani, Mohsen Sharifi
    International Journal of Imaging Systems and Technology.2024;[Epub]     CrossRef
  • A Novel Computer-Aided Detection/Diagnosis System for Detection and Classification of Polyps in Colonoscopy
    Chia-Pei Tang, Hong-Yi Chang, Wei-Chun Wang, Wei-Xuan Hu
    Diagnostics.2023; 13(2): 170.     CrossRef
  • Revealing the Boundaries of Selected Gastro-Intestinal (GI) Organs by Implementing CNNs in Endoscopic Capsule Images
    Sofia A. Athanasiou, Eleftheria S. Sergaki, Andreas A. Polydorou, Alexios A. Polydorou, George S. Stavrakakis, Nikolaos M. Afentakis, Ioannis O. Vardiambasis, Michail E. Zervakis
    Diagnostics.2023; 13(5): 865.     CrossRef
  • Transformer with Hybrid Attention Mechanism for Stereo Endoscopic Video Super Resolution
    Tianyi Zhang, Jie Yang
    Symmetry.2023; 15(10): 1947.     CrossRef
  • KAPSUL ENDOSKOPİYASI İLƏ İNCƏ BAĞIRSAQ MÜAYİNƏSİNDƏ MÖVCUD VƏZİYYƏT VƏ GƏLƏCƏK PERSPEKTİVLİYİ
    Həbib Həsənzadə, Amalya Həsənova Həbib Həsənzadə, Amalya Həsənova
    PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions.2023; 34(11): 105.     CrossRef
  • Review: Colon Capsule Endoscopy in Inflammatory Bowel Disease
    Writaja Halder, Faidon-Marios Laskaratos, Hanan El-Mileik, Sergio Coda, Stevan Fox, Saswata Banerjee, Owen Epstein
    Diagnostics.2022; 12(1): 149.     CrossRef
  • Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering
    Geonhui Son, Taejoon Eo, Jiwoong An, Dong Oh, Yejee Shin, Hyenogseop Rha, You Kim, Yun Lim, Dosik Hwang
    Diagnostics.2022; 12(8): 1858.     CrossRef
  • Dynamic Depth-Aware Network for Endoscopy Super-Resolution
    Wenting Chen, Yifan Liu, Jiancong Hu, Yixuan Yuan
    IEEE Journal of Biomedical and Health Informatics.2022; 26(10): 5189.     CrossRef
  • X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices
    Rolf Bech Kjeldsen, Maja Nørgaard Kristensen, Carsten Gundlach, Lasse Højlund Eklund Thamdrup, Anette Müllertz, Thomas Rades, Line Hagner Nielsen, Kinga Zór, Anja Boisen
    ACS Biomaterials Science & Engineering.2021; 7(6): 2538.     CrossRef
  • VR-Caps: A Virtual Environment for Capsule Endoscopy
    Kağan İncetan, Ibrahim Omer Celik, Abdulhamid Obeid, Guliz Irem Gokceler, Kutsev Bengisu Ozyoruk, Yasin Almalioglu, Richard J. Chen, Faisal Mahmood, Hunter Gilbert, Nicholas J. Durr, Mehmet Turan
    Medical Image Analysis.2021; 70: 101990.     CrossRef
  • Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy
    Ji Hyung Nam, Youngbae Hwang, Dong Jun Oh, Junseok Park, Ki Bae Kim, Min Kyu Jung, Yun Jeong Lim
    Scientific Reports.2021;[Epub]     CrossRef
  • Kvasir-Capsule, a video capsule endoscopy dataset
    Pia H. Smedsrud, Vajira Thambawita, Steven A. Hicks, Henrik Gjestang, Oda Olsen Nedrejord, Espen Næss, Hanna Borgli, Debesh Jha, Tor Jan Derek Berstad, Sigrun L. Eskeland, Mathias Lux, Håvard Espeland, Andreas Petlund, Duc Tien Dang Nguyen, Enrique Garcia
    Scientific Data.2021;[Epub]     CrossRef
  • Development and Verification of a Deep Learning Algorithm to Evaluate Small-Bowel Preparation Quality
    Ji Hyung Nam, Dong Jun Oh, Sumin Lee, Hyun Joo Song, Yun Jeong Lim
    Diagnostics.2021; 11(6): 1127.     CrossRef
  • Role of Artificial Intelligence in Video Capsule Endoscopy
    Ioannis Tziortziotis, Faidon-Marios Laskaratos, Sergio Coda
    Diagnostics.2021; 11(7): 1192.     CrossRef
  • Design and Research of Interactive Animation of Immersive Space Scene Based on Computer Vision Technology
    Shan Wu, Hubin Liu, Qi Xu, Yulong Liu, Sang-Bing Tsai
    Mathematical Problems in Engineering.2021; 2021: 1.     CrossRef
  • Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy
    Sang Hoon Kim, Youngbae Hwang, Dong Jun Oh, Ji Hyung Nam, Ki Bae Kim, Junseok Park, Hyun Joo Song, Yun Jeong Lim
    Scientific Reports.2021;[Epub]     CrossRef
  • Artificial intelligence that determines the clinical significance of capsule endoscopy images can increase the efficiency of reading
    Junseok Park, Youngbae Hwang, Ji Hyung Nam, Dong Jun Oh, Ki Bae Kim, Hyun Joo Song, Su Hwan Kim, Sun Hyung Kang, Min Kyu Jung, Yun Jeong Lim, Sudipta Roy
    PLOS ONE.2020; 15(10): e0241474.     CrossRef
  • EndoL2H: Deep Super-Resolution for Capsule Endoscopy
    Yasin Almalioglu, Kutsev Bengisu Ozyoruk, Abdulkadir Gokce, Kagan Incetan, Guliz Irem Gokceler, Muhammed Ali Simsek, Kivanc Ararat, Richard J. Chen, Nicholas J. Durr, Faisal Mahmood, Mehmet Turan
    IEEE Transactions on Medical Imaging.2020; 39(12): 4297.     CrossRef
  • 6,823 View
  • 249 Download
  • 19 Web of Science
  • 19 Crossref
Close layer
Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now?
Youngbae Hwang, Junseok Park, Yun Jeong Lim, Hoon Jai Chun
Clin Endosc 2018;51(6):547-551.   Published online November 30, 2018
DOI: https://doi.org/10.5946/ce.2018.173
AbstractAbstract PDFPubReaderePub
Unlike wired endoscopy, capsule endoscopy requires additional time for a clinical specialist to review the operation and examine the lesions. To reduce the tedious review time and increase the accuracy of medical examinations, various approaches have been reported based on artificial intelligence for computer-aided diagnosis. Recently, deep learning–based approaches have been applied to many possible areas, showing greatly improved performance, especially for image-based recognition and classification. By reviewing recent deep learning–based approaches for clinical applications, we present the current status and future direction of artificial intelligence for capsule endoscopy.

Citations

Citations to this article as recorded by  
  • Computer-Aided Bleeding Detection Algorithms for Capsule Endoscopy: A Systematic Review
    Ahmmad Musha, Rehnuma Hasnat, Abdullah Al Mamun, Em Poh Ping, Tonmoy Ghosh
    Sensors.2023; 23(16): 7170.     CrossRef
  • Machine learning based small bowel video capsule endoscopy analysis: Challenges and opportunities
    Haroon Wahab, Irfan Mehmood, Hassan Ugail, Arun Kumar Sangaiah, Khan Muhammad
    Future Generation Computer Systems.2023; 143: 191.     CrossRef
  • Convolutional neural network-based segmentation network applied to image recognition of angiodysplasias lesion under capsule endoscopy
    Ye Chu, Fang Huang, Min Gao, Duo-Wu Zou, Jie Zhong, Wei Wu, Qi Wang, Xiao-Nan Shen, Ting-Ting Gong, Yuan-Yi Li, Li-Fu Wang
    World Journal of Gastroenterology.2023; 29(5): 879.     CrossRef
  • Automatic Classification of GI Organs in Wireless Capsule Endoscopy Using a No-Code Platform-Based Deep Learning Model
    Joowon Chung, Dong Jun Oh, Junseok Park, Su Hwan Kim, Yun Jeong Lim
    Diagnostics.2023; 13(8): 1389.     CrossRef
  • Recognizing schizophrenia using facial expressions based on convolutional neural network
    Xiaofei Zhang, Tongxin Li, Conghui Wang, Tian Tian, Haizhu Pang, Jisong Pang, Chen Su, Xiaomei Shi, Jiangong Li, Lina Ren, Jing Wang, Lulu Li, Yanyan Ma, Shen Li, Lili Wang
    Brain and Behavior.2023;[Epub]     CrossRef
  • A convolutional neural network for bleeding detection in capsule endoscopy using real clinical data
    Dorothee Turck, Thomas Dratsch, Lorenz Schröder, Florian Lorenz, Johanna Dinter, Martin Bürger, Lars Schiffmann, Philipp Kasper, Gabriel Allo, Tobias Goeser, Seung-Hun Chon, Dirk Nierhoff
    Minimally Invasive Therapy & Allied Technologies.2023; 32(6): 335.     CrossRef
  • Computer vision-based solutions to overcome the limitations of wireless capsule endoscopy
    Ana Horovistiz, Marina Oliveira, Helder Araújo
    Journal of Medical Engineering & Technology.2023; 47(4): 242.     CrossRef
  • Clinical impact of wireless capsule endoscopy for small bowel investigation (Review)
    Alin Ionescu, Adina Glodeanu, Mihaela Ionescu, Sorin Zaharie, Ana Ciurea, Andreea Golli, Nikolaos Mavritsakis, Didi Popa, Cristin Vere
    Experimental and Therapeutic Medicine.2022;[Epub]     CrossRef
  • Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering
    Geonhui Son, Taejoon Eo, Jiwoong An, Dong Oh, Yejee Shin, Hyenogseop Rha, You Kim, Yun Lim, Dosik Hwang
    Diagnostics.2022; 12(8): 1858.     CrossRef
  • From labels to priors in capsule endoscopy: a prior guided approach for improving generalization with few labels
    Anuja Vats, Ahmed Mohammed, Marius Pedersen
    Scientific Reports.2022;[Epub]     CrossRef
  • CNN-Based Segmentation Network Applied to Image Recognition of Angiodysplasias Lesion Under Capsule Endoscopy
    Ye Chu, Fang Huang, Min Gao, Duowu Zou, Jie Zhong, Wei Wu, Qi Wang, Xiaonan Shen, Tingting Gong, Yuanyi Li, Lifu Wang
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • The role of computer-assisted systems for upper-endoscopy quality monitoring and assessment of gastric lesions
    Daniela Cornelia Lazăr, Mihaela Flavia Avram, Alexandra Corina Faur, Ioan Romoşan, Adrian Goldiş
    Gastroenterology Report.2021; 9(3): 185.     CrossRef
  • Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy
    Sang Hoon Kim, Youngbae Hwang, Dong Jun Oh, Ji Hyung Nam, Ki Bae Kim, Junseok Park, Hyun Joo Song, Yun Jeong Lim
    Scientific Reports.2021;[Epub]     CrossRef
  • Editors' Choice of Noteworthy Clinical Endoscopy Publications in the First Decade
    Gwang Ha Kim, Kwang An Kwon, Do Hyun Park, Jimin Han
    Clinical Endoscopy.2021; 54(5): 633.     CrossRef
  • Applicability of colon capsule endoscopy as pan-endoscopy: From bowel preparation, transit, and rating times to completion rate and patient acceptance
    Fanny E.R. Vuik, Sarah Moen, Stella A.V. Nieuwenburg, Eline H. Schreuders, Ernst J. Kuipers, Manon C.W. Spaander
    Endoscopy International Open.2021; 09(12): E1852.     CrossRef
  • A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in wireless capsule endoscopy imaging
    Tariq Rahim, Muhammad Arslan Usman, Soo Young Shin
    Computerized Medical Imaging and Graphics.2020; 85: 101767.     CrossRef
  • Robotics in the Gut
    Jihong Min, Yiran Yang, Zhiguang Wu, Wei Gao
    Advanced Therapeutics.2020;[Epub]     CrossRef
  • Using artificial intelligence to improve adequacy of inspection in gastrointestinal endoscopy
    Piet C. de Groen
    Techniques and Innovations in Gastrointestinal Endoscopy.2020; 22(2): 71.     CrossRef
  • Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy
    Eyal Klang, Yiftach Barash, Reuma Yehuda Margalit, Shelly Soffer, Orit Shimon, Ahmad Albshesh, Shomron Ben-Horin, Marianne Michal Amitai, Rami Eliakim, Uri Kopylov
    Gastrointestinal Endoscopy.2020; 91(3): 606.     CrossRef
  • Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network
    Hiroaki Saito, Tomonori Aoki, Kazuharu Aoyama, Yusuke Kato, Akiyoshi Tsuboi, Atsuo Yamada, Mitsuhiro Fujishiro, Shiro Oka, Soichiro Ishihara, Tomoki Matsuda, Masato Nakahori, Shinji Tanaka, Kazuhiko Koike, Tomohiro Tada
    Gastrointestinal Endoscopy.2020; 92(1): 144.     CrossRef
  • Artificial Intelligence in Gastrointestinal Endoscopy
    Alexander P. Abadir, Mohammed Fahad Ali, William Karnes, Jason B. Samarasena
    Clinical Endoscopy.2020; 53(2): 132.     CrossRef
  • WCE polyp detection with triplet based embeddings
    Pablo Laiz, Jordi Vitrià, Hagen Wenzek, Carolina Malagelada, Fernando Azpiroz, Santi Seguí
    Computerized Medical Imaging and Graphics.2020; 86: 101794.     CrossRef
  • Recent Development of Computer Vision Technology to Improve Capsule Endoscopy
    Junseok Park, Youngbae Hwang, Ju-Hong Yoon, Min-Gyu Park, Jungho Kim, Yun Jeong Lim, Hoon Jai Chun
    Clinical Endoscopy.2019; 52(4): 328.     CrossRef
  • Barriers to Artificial Intelligence Adoption in Healthcare Management: A Systematic Review
    Mir Mohammed Assadullah
    SSRN Electronic Journal .2019;[Epub]     CrossRef
  • 6,136 View
  • 193 Download
  • 25 Web of Science
  • 24 Crossref
Close layer

Clin Endosc : Clinical Endoscopy Twitter Facebook
Close layer
TOP