Skip Navigation
Skip to contents

Clin Endosc : Clinical Endoscopy

OPEN ACCESS

Articles

Page Path
HOME > Clin Endosc > Volume 46(1); 2013 > Article
Focused Review Series: Photodynamic Therapy Photodynamic Therapy (PDT): PDT Mechanisms
Ron R. Allison1, Keyvan Moghissi2
Clinical Endoscopy 2013;46(1):24-29.
DOI: https://doi.org/10.5946/ce.2013.46.1.24
Published online: January 31, 2013

121st Century Oncology, Greenville, NC, USA.

2Yorkshire Laser Center, Goole, UK.

Correspondence: Keyvan Moghissi. Yorkshire Laser Center, Goole, East Yorkshire, DN14 6RX, UK. Tel: +44-172-429-0456, Fax: +44-172-429-0471, kmoghissi@yorkshirelasercentre.org
• Received: November 20, 2012   • Revised: January 8, 2013   • Accepted: January 11, 2013

Copyright © 2013 Korean Society of Gastrointestinal Endoscopy

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 20,617 Views
  • 552 Download
  • 481 Crossref
  • 562 Scopus
prev next
  • Photodynamic therapy (PDT) is a light based therapy used to ablate tumors. As practiced in oncology a photosensitizing agent is applied and then activated by a specific wavelength and energy of light. This light energy in the presence of oxygen will lead to the creation of the photodynamic reaction which is cyto and vasculo toxic. This paper will review the mechanisms of action of PDT and how they may be manipulated to improve clinical outcome in cancer patients.
Photodynamic therapy (PDT) is an elegant light based oncologic intervention. As currently practiced, a photosensitizer (PS) is applied then activated by light of the appropriate wavelength and intensity. This creates the photodynamic reaction (PDR) which is tumor and vascular ablative.1 This paper will review the mechanisms of action that allow PDT to be a reliable oncologic therapy. We will also offer insight to clinicians and scientists on ways and means to improve therapy and outcome. Following a brief historical review, we will detail the components of PDT that will then allow us to better understand the mechanisms of action of this underutilized cancer treatment.
PDT was accidently discovered over 100 years ago by medical student Oscar Raab.2 He was studying the interaction of fluorescent dyes on infusaria. Raab found that intense light applied to the dye resulted in rapid destruction of these microorganisms. This new light based therapy was more formally described and elucidated by Raab's professors Jesionek and von Tappeiner who coined the ablative process, Photodynamische Wirkung, best translated as The PDR, and PDT was born. By the early 1900's, patients were being successfully treated by this process for a wide variety of cancers, particularly of the skin. Despite this early success, PDT did not achieve enough momentum and was lost for nearly 50 years when the PDR was rediscovered by Lipson and Schwartz. Studies during the 1950's to 1960 revealed not only tumor ablation but the inter-related ability of photosensitizing agents to fluoresce and demarcate tumors.3,4
However, it was not until the 1970's when Dougherty,5 working with porphyrin compounds, accidentally rediscovered PDT. In contrast to previous iterations, Dougherty created a commercially suitable photosensitizing drug, reliable light sources and appropriate clinical trials proving the value of PDT to the oncologic community. For this he is affectionately known as "The Father of PDT," though many other important figures helped bring PDT to a worldwide audience.
To better understand the mechanisms of action of PDT, its components need to be defined and explored. Fundamentally, a PS agent is introduced, and then activated by light. When in the presence of oxygen, this active PS may create the PDR. This occurs in a complex interplay of time and space which should ultimately result in lesion ablation and sparing of normal tissue. We will look at each component separately, with a focus on how each effects PDT's mechanistics.
PS agents are natural or synthetic structures that transfer light energy.6 As photosynthesis is a form of light transfer that is the basis of life on Earth, it should come as no surprise that many structures allow for light transfer. However, to be considered a successful PS agent for PDT, the structure must allow for the specific creation of the PDR, which is detailed later in this section. Not surprisingly, the chlorophyll derivatives from plants and bacteria are excellent PS agents. So too are dyes and porphyrins. While thousands upon thousands of structures have been identified as PS agents, perhaps two dozen have been well characterized and only about one dozen employed in clinical trials. Of these perhaps two or three are Food and Drug Administration (or equivalent) approved and commercially available. In the clinic, a successful PS agent has most of the following characteristics: nontoxic till activated, hydrophilic for easy systemic application, activated by a clinically useful light wavelength (see below), and reliable generation of the PDR. It also concentrates in tumor, clears normal tissue, is eliminated from the patient relatively rapidly, is a nontoxic degradation product with ease of synthesis, pain free therapy and, just as importantly, commercial availability. Several excellent PS agents cannot be used simply because they are unavailable for purchase. Many countries have developed PSs that are approved for clinical use in their own territory and which have proved to be perfectly safe but are not licensed to be administered in another country. Currently several PS agents are on the market and while each creates the PDR they are not interchangeable. It is worth a brief review of the benefits and shortcomings of each. Please see Table 1.
Hematoporphyrin derivative (HPD)
HPD (Photofrin; Axcan Pharma/Pinnacle Inc., Mont-Saint-Hilaire, Canada) was the first commercially available drug and has the most clinical experience. This is the PS brought to market by Dougherty in the 1970's. HPD is a mixture of various monomers, dimmers, and polymers of hematoporphyrin, all required for successful PDT. This PS is nontoxic and upon activation with light does not cause pain, allowing for easy and reliable outpatient treatment. The drug is not an active producer of the PDR so treatment times can be 20 minutes or more per lesion. Further the drug is retained in various organs, including the skin for 6 to 8 weeks post introduction. Unintentional exposure of skin to sunlight (a strong light source) during this time frame can cause unintentional PDT to exposed skin. This can result in severe burn.
M-tetrahydroxophenyl chlorine (mTHPC) (Foscan)
This plant based chlorine derivative is synthetically pure and produces a rapid and significant PDR. Treatment time is measured in seconds. The drug is so active that after infusion patients must stay in a dark room for 24 hours as room light will activate the drug and cause a severe burn (dark toxicity). In addition, the treatment is painful so most individuals undergo illumination while under anesthesia. Still, as it is highly effective, the drug has found a niche in the treatment of primary and recurrent head and neck cancers.
Mono-L-aspartyl chlorine e6 (NPe6)
Marketed under different names such as MACE, LS11, NPe6, this derivative is called Fotolon (RUE Belmedpreparaty, Minsk, Republic of Belarus). This plant based chlorine is a very effective agent to generate the PDR. It does not have the dark toxicity common with Foscan (Biolitec Pharma Ltd., Dublin, Ireland) and also allows treatment several hours after infusion. In contrast to Photofrin or Foscan, this PS allows for same day infusion and therapy which is very convenient for patients and practitioners.
Aminolevulinic acid (ALA)
ALA is a prodrug that is enzymatically converted to Proto-Porphyrin IX, a potent PS. ALA can be topically placed, orally introduced or intravenously injected. Whilst the treatment is uncomfortable when topically placed, no systemic phototoxicity occurs. As such, ALA treatment has found a niche for cutaneous disease.
Fotosens
This is a dye based PS that can be activated shortly after infusion. This allows for same day therapy in a single sitting. However, illumination can take 20 minutes per lesion and several weeks of skin photosensitivity is to be expected.
Illumination
Each PS has a unique wavelength of light and intensity of light fluence required for successful activation. Clinically, red light -630 nm can penetrate tissue to perhaps 0.5 cm which allows for both surface and more deep seated tumor illumination.6,7 Some PS may activate at higher wavelength for deeper penetration, others at lower wavelengths for more superficial illumination. By choosing the appropriate PS and light wavelength, one can optimize treatment. For example, a superficial skin lesion may be illuminated with blue light -400 nm which allows only a 1 mm light penetration.6-9 When using topical ALA, PDT ablates the skin lesion but spares deep normal tissue of the skin. Clinically, this translates into successful cancer therapy without scarring of normal tissue. ALA, HPD, MACE, and Foscan can activate at multiple light wavelength from blue to green to red, again allowing for more selective illumination depth based on the individual tumor's depth and location of surrounding critical structures.6 This is an underutilized characteristic of these PS which could be better exploited in the clinic.
The light source itself can vary tremendously.7 As long as light of the appropriate wavelength and fluence activates the PS, successful PDT can occur. Intense visible multispectrum light from a lamp or precise laser light (tuned to the PSs) are currently successful light sources for PDT. Currently, regulatory agency approved PS also have regulatory agency approved light sources which are commercially available. As laser remains relatively expensive, though highly reliable; new light sources such as light emitting diodes (LED's) have been developed (Quantel Ltd., Newbury, UK). These are generally very small and portable, so new treatment paradigms such as prolonged or repeated (metronomic) PDT are now possible.
As the light itself must be brought to the region of treatment, a variety of procedures for PDT have been developed to accomplish this.8 Fiberoptic cables or the LED itself can be brought to the tumor bed by direct placement during surgery or endoscopy. In addition, ultrasound or computed tomography guided placement is also possible, similar to the brachytherapy procedure used in radiation oncology. With current technology, light sources can be reliably introduced into virtually all of human anatomy.
PDR
When light of the appropriate wavelength and intensity bathes the PS, a PDR may occur.9 Fundamentally, specific wavelength light activates the PS which then leads to a series of photochemical reactions that ideally allow for tumor destruction without undue normal tissue injury. Light energy alters the inert PS via electron transfer from the photon of light to the PS. This activated PS may then lose energy by several pathways. Energy loss may occur by release of light. This fluorescent phenomenon, may be observed, and allows for detection and delineation of tumor. Fluorescence detection is an underutilized pathway of the PS; it can assist in targeting tumor and defining normal tissue borders (which do not fluoresce) since minimal PS is in surrounding normal tissue. The active PS can also lose energy by creating a type I photochemical reaction. This Fenton reaction creates free radicals which are destructive. However, the most important pathway for clinical PDT is the generation of a type II photochemical reaction which is termed the PDR. Here the PS interacts with oxygen to generate singlet oxygen, which is considered to be the basis of PDT's tumor and vascular ablation ability. This oxygen dependent type II PDR is a sine qua non for PDT. The half life of singlet oxygen is in the order of 40 nanoseconds which allows for destruction of a radius of 20 nanometers.10 Whilst a truly tiny volume, clearly it is enough for clinical success.
How exactly the PDR translates into successful clinical outcomes is a work in progress.11 As described, singlet oxygen has a radius of destruction measured in nanometers yet this allows for a significant and complex cascade of events resulting in local, regional, and systemic alteration of both tumor and immune response so that reliable tumor control is possible. This section will describe the mechanisms of action of PDT arbitrarily separated as cellular events, vascular events and systemic immune events. In vivo, these will occur simultaneously or nearly so.
Tumor cell
Tumor destruction from PDT can occur by both programmed (apoptotic) pathways and non-programmed (necrosis) pathways.12,13 This is fortunate as some tumors have developed genetic mutations eliminating or minimizing apoptosis.13 On a cellular and sub cellular level, the PS is brought to the malignancy through various mechanisms including:14-16 receptor mediated phagocytosis/endocytosis, low density lipoprotein receptor binding, lipid binding, uptake via tyrosine kinase/epidermal growth factor receptor, diffusion, biodistribution and perhaps many other yet undiscovered pathways. Each PS may have a preferred method of uptake into tumor cells.17,18 As an example Photofrin, composed of multiple sized porphyrins, is taken up by multiple pathways and is concentrated in not only the cell membrane but also various organelle membranes such as mitochondria. In contrast, MACE, which is amphiphilic, concentrates in mitochondria. Foscan appears to concentrate in the golgi apparatus and endoplasmic reticulum.
Generally, when high light intensity is employed, the tumor cells are rapidly ablated by necrosis.19 The cellular and sub cellular membrane destruction is rapid. Most probably, calcium20 and metabolic byproducts21 are released which are not compatible with cell function and repair functions are overwhelmed, leading to ablation of the tumor cell. This also leads to release of cytokines and toxic chemicals from, for example, the mitochondria.22 This leakage will then create lethal damage in cells nearby23 (bystander effect) as well as creating a regional and systematic reaction, which is described below.
In contrast, apoptotic death may be initiated by PDT, generally when low light doses are employed.24 During apoptosis, the cells cease to function and undergo an orderly and programmed dissolution. No bystander effect or immune response is expected as no toxic chemicals are leaked. Apoptotic pathways are found in both tumor and normal cells across many species including bacteria. It appears that apoptosis is a well conserved method of the organism to eliminate damaged cells. PDT appears to be able to activate this pathway.
It should be noted that PS is believed to preferentially concentrate in the rapidly dividing cells of malignancy whilst clearing preferentially from surrounding normal tissue which retains little PS. Therefore, ideally the PDR is lethal to tumors without affecting normal tissue. In reality, any cell with PS that is activated may undergo necrosis or apoptosis and, if normal tissue containing significant amounts of PS are exposed to light, severe tissue morbidity can be expected (i.e., skin photosensitivity).6
Vascular events
Just as in tumor cells, endothelial cells of the vascular systems can concentrate PS.17,18,25 This may be due to similar mechanisms including receptors, diffusion, and multiple other pathways, including some yet to be described. The neovasculature of malignancy is also felt to be leaky due to poor and incomplete cellular borders and may serve as an additional means for PS accumulation in tumor regions as it leaks through. In contrast, the surrounding normal vasculature in the nontumorous region may facilitate PS clearance.
Just as in tumor, PS in vasculature, when activated by appropriate light, will create the PDR. Several events will occur. By disrupting the vascular walls, blood will not flow to the tumor and oxygen will become scarce.26 When this occurs, necrosis is to be expected both of the involved neo vasculature and nearby tumor cells. The release of toxic chemicals, excess calcium and other intra cellular debris will lead to blockage and collapse of the micro vasculature feeding the tumor. Platelets will be activated and aggregate.27 Overall, a rapid loss of blood supply in concert with direct tumor and vascular cell lysis will be a lethal event to the tumor. Also possible, is a less intense reaction where light penetrates at lower fluences. Here, apoptosis pathways of the vasculature may occur, again leading to tumor hypoxia and destruction but without cytokine and immune activation. Clinically, both apoptosis and necrosis occurs in the neovasculature contributing significantly to tumor cell destruction not only directly by lack of blood and hypoxia but also by release of toxic substances such as thromboxanes, platelet aggregators, and various toxic cytokines which will also prime the immune system.28 Potentially, depending on the clinical situation, one may be able to illuminate in such a fashion as to favor apoptotic versus necrotic pathways.
Immune system
PDT may enhance immune response and surveillance.29 It is probable that long-term tumor control is a combination of direct PDT effects on the lesion and its vasculature in combination with up regulation of the immune system. When PDT induces necrosis of tumors and their vasculature, an immune cascade is also initiated.30 Release of inflammatory mediators occurs from the treated region, which include various cytokines, growth factors and proteins. This release stimulates various white blood cells to be activated including neutrophils and macrophages which converge on the treatment region. It is felt that significant tumor cell death occurs from these activated immune cells.31,32 Upon arrival, macrophages phagocytize PDT damaged cancer cells and present proteins from these tumors to CD4 helper T lymphocytes, which then activate CD8 cytotoxic T lymphocytes. Not only does this immune reaction occur at the PDT site, it also may occur at regional and distant lymphatic tissue. These cytotoxic T cells may not only cause necrosis but may also induce apoptotic pathways whenever tumor cells are found, even after PDT is complete.
Clinically, patients treated with PDT show elevated levels of various cytokines and histologic evaluations of treated tumors routinely show immune cell infiltration, again pointing to the immunomodulatory effect of PDT. Much work needs to be done to better define and manipulate the immune system response of PDT in particular and cancer in general.
In the clinical situation, application of PDT is translated into a two step procedure. In the first, presensitisation, a PS is administered systemically, by intravenous injection, or topically. In the second, illumination, the presensitised tissue is exposed to a specific light whose wavelength matches the absorption band of the chemical/drug. The ensuing PDR is presented as necrotic destruction of the tissue under treatment.
Clinicians have far more opportunity to improve PDT than simply pointing the light at the target. As described, PDT is an interplay of drug and light both of which can be manipulated to maximize outcome in various clinical situations. Again, for simplicity, we will describe modifications and outcomes for drug dose, light dose and PDR separately.
Drug dose
PS accumulates in the malignant region and is cleared from normal tissue. One strong means of maximising PDT in tumor and sparing normal tissue is to use as little PS as possible to achieve tumor response.33 When using a clinically determined minimal concentration of PS, the tumor will still concentrate enough PS for an affective PDR, while normal tissue, which has less PS, will not be damaged. The standardised dose of PS may not always be the optimal dose.
Light
Light localization is critical for optimal and accurate PDT; however, localisation of the tumor bed may not always be obvious. By employing fluorescence of the PS, the clinician can often visualize tumor.34 This helps define a more precise therapy. Furthermore, loss of fluorescence post-PDT therapy may indicate tumor ablation far better than a preprogrammed time of illumination. The use of fluorescence both for detection of disease and treatment outcome is underutilized. Intense illumination has been the basis of clinical PDT; this was historically due to difficulties in getting the light source to the lesion. The advantage of high fluence is that more light photons penetrate deeply allowing a more complete illumination at depth. When using low PS drug dose, high light fluence allows for excellent response rates without undue morbidity. In contrast, high drug dose with high light fluence rates create normal tissue damage as significant PDR can occur in normal tissue that has been flooded by PS. High light doses also push toward necrotic pathways which may have implications for immune response. Low light fluences allow for apoptosis and less inflammation and immune response. This may have clinical ramifications. For example, intense therapy in a tight space, such as the airway or esophagus may lead to abundant normal tissue reaction and obstruction due to necrosis and inflammation. Lower light doses might prevent this.
Drug light intervals (DLI)
When PS is first introduced it is travelling in the vascular supply. With time, PS accumulates in tumor and is less likely to be in the blood. So the DLI can be a critical component of controlling PDT.35 By illuminating early after PS introduction, vascular effects would predominate; later illumination would favor tumor cell effect. Potentially prolonged DLI could give a more select tumor destroying effect.36 In contrast, rapid DLI would favor vascular collapse. In a highly vascular tumor, this may be preferential.37
PDR
By altering drug dose, light dose and DLI,38,39 clinicians may provide for necrotic pathway PDT, apoptotic pathway PDT, selectively vascular destructive PDT, selectively tumor destructive PDT and even immunomodulatory PDT. Through rationally designed clinical trials that further explore these varied treatment paradigms, PDT will be able to advance dramatically as an oncologic intervention.
PDR results from the interaction between a chemical PS and a specific wavelength of light in the presence of oxygen. The interaction releases cytotoxic species, notably singlet oxygen. The overall mechanism involves molecular, subcellular and vascular changes which bring about necrosis and/or apoptosis of the tumor. The parameters of the individual components of PDT, such as the PS, light and the interval between presensitization and illumination, can be modulated to achieve cellular (direct) or vascular response predominance. We are still far from achieving optimal objectives. For now, even with our current understanding of the mechanism of PDT, the clinician has a double edge therapeutic sword to target and inflict injuries to the tumor. On the one hand, the operator can localize the lesion visually or by imaging to direct the light to it. On the other hand, by the very fact that the PS is accumulated in the tumor tissue and that it attracts its own specific wavelength of light, the tumor will be specifically targeted, provided that the light reaches the presensitized tissue. This is akin to the situation where the indentation of a key matches that of the lock allowing its unlocking.
  • 1. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889–905. 9637138.ArticlePubMedPMC
  • 2. Allison RR, Mota HC, Sibata CH. Clinical PD/PDT in North America: an historical review. Photodiagnosis Photodyn Ther 2004;1:263–277.ArticlePubMed
  • 3. Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 1960;82:508–516. 13762615.ArticlePubMed
  • 4. Lipson RL, Baldes EJ. Photosensitivity and heat. Arch Dermatol 1960;82:517–520. 13762614.ArticlePubMed
  • 5. Dougherty TJ. Photodynamic therapy (PDT) of malignant tumors. Crit Rev Oncol Hematol 1984;2:83–116. 6397270.ArticlePubMed
  • 6. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJ, Sibata CH. Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther 2004;1:27–42.ArticlePubMed
  • 7. Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodyn Ther 2004;1:43–48.ArticlePubMed
  • 8. Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci 2002;17:173–186. 12181632.ArticlePubMed
  • 9. Sibata CH, Colussi VC, Oleinick NL, Kinsella TJ. Photodynamic therapy in oncology. Expert Opin Pharmacother 2001;2:917–927. 11585008.ArticlePubMed
  • 10. Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991;53:549–553. 1830395.ArticlePubMed
  • 11. Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers 2011;3:2516–2539.ArticlePubMedPMC
  • 12. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 2002;1:1–21. 12659143.ArticlePubMed
  • 13. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002;2:277–288. 12001989.ArticlePubMed
  • 14. Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 1996;64:469–485. 8806226.ArticlePubMed
  • 15. Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy. J Photochem Photobiol B 1994;23:3–8. 8021748.ArticlePubMed
  • 16. Jori G, Reddi E. The role of lipoproteins in the delivery of tumour-targeting photosensitizers. Int J Biochem 1993;25:1369–1375. 8224351.ArticlePubMed
  • 17. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part three: photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther 2005;2:91–106.ArticlePubMedPMC
  • 18. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two: cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther 2005;2:1–23.ArticlePubMedPMC
  • 19. Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 1998;150(5 Suppl):S146–S156. 9806617.ArticlePubMed
  • 20. Ding X, Xu Q, Liu F, et al. Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Lett 2004;216:43–54. 15500948.ArticlePubMed
  • 21. Henderson BW, Donovan JM. Release of prostaglandin E2 from cells by photodynamic treatment in vitro. Cancer Res 1989;49(24 Pt 1):6896–6900. 2531034.PubMed
  • 22. Henderson BW, Owczarczak B, Sweeney J, Gessner T. Effects of photodynamic treatment of platelets or endothelial cells in vitro on platelet aggregation. Photochem Photobiol 1992;56:513–521. 1454881.ArticlePubMed
  • 23. Dahle J, Kaalhus O, Moan J, Steen HB. Cooperative effects of photodynamic treatment of cells in microcolonies. Proc Natl Acad Sci U S A 1997;94:1773–1778. 9050854.ArticlePubMedPMC
  • 24. Agarwal ML, Clay ME, Harvey EJ, Evans HH, Antunez AR, Oleinick NL. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res 1991;51:5993–5996. 1933862.PubMed
  • 25. Abels C. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT). Photochem Photobiol Sci 2004;3:765–771. 15295633.ArticlePubMed
  • 26. Chen B, Pogue BW, Goodwin IA, et al. Blood flow dynamics afterphotodynamic therapy with verteporfin in the RIF-1 tumor. Radiat Res 2003;160:452–459. 12968929.ArticlePubMed
  • 27. Fingar VH, Wieman TJ, Doak KW. Role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction. Cancer Res 1990;50:2599–2603. 2139357.PubMed
  • 28. McMahon KS, Wieman TJ, Moore PH, Fingar VH. Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res 1994;54:5374–5379. 7923168.PubMed
  • 29. Krosl G, Korbelik M. Potentiation of photodynamic therapy by immunotherapy: the effect of schizophyllan (SPG). Cancer Lett 1994;84:43–49. 8076362.ArticlePubMed
  • 30. Gollnick SO, Liu X, Owczarczak B, Musser DA, Henderson BW. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res 1997;57:3904–3909. 9307269.PubMed
  • 31. Coutier S, Bezdetnaya L, Marchal S, et al. Foscan (mTHPC) photosensitized macrophage activation: enhancement of phagocytosis, nitric oxide release and tumour necrosis factor-alpha-mediated cytolytic activity. Br J Cancer 1999;81:37–42. 10487610.ArticlePubMedPMC
  • 32. Gollnick SO, Evans SS, Baumann H, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer 2003;88:1772–1779. 12771994.ArticlePubMedPMC
  • 33. Allison RR, Sibata CH. Photofrin photodynamic therapy: 2.0 mg/kg or not 2.0 mg/kg that is the question. Photodiagnosis Photodyn Ther 2008;5:112–119. 19356641.ArticlePubMed
  • 34. Allison RR, Sibata CH. Photodiagnosis for cutaneous malignancy: a brief clinical and technical review. Photodiagnosis Photodyn Ther 2008;5:247–250. 19356664.ArticlePubMed
  • 35. Hamblin MR, Rajadhyaksha M, Momma T, Soukos NS, Hasan T. In vivo fluorescence imaging of the transport of charged chlorin e6 conjugates in a rat orthotopic prostate tumour. Br J Cancer 1999;81:261–268. 10496351.ArticlePubMedPMC
  • 36. Kurohane K, Tominaga A, Sato K, North JR, Namba Y, Oku N. Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett 2001;167:49–56. 11323098.ArticlePubMed
  • 37. Chen B, Roskams T, de Witte PA. Antivascular tumor eradication by hypericin-mediated photodynamic therapy. Photochem Photobiol 2002;76:509–513. 12462645.ArticlePubMed
  • 38. Allison RR. Future PDT. Photodiagnosis Photodyn Ther 2009;6:231–234. 19932457.ArticlePubMed
  • 39. Allison RR, Bagnato VS, Sibata CH. Future of oncologic photodynamic therapy. Future Oncol 2010;6:929–940. 20528231.ArticlePubMed
Table 1
Photosensitizers in Pulmonary Photodynamic Therapy
ce-46-24-i001.jpg

ALA, aminolevulinic acid; MACE, mono-L-aspartyl chlorine e6.

Figure & Data

REFERENCES

    Citations

    Citations to this article as recorded by  
    • Impact of the hydrophilic-lipophilic balance of free-base and Zn(II) tricationic pyridiniumporphyrins and irradiation wavelength in PDT against the melanoma cell lines
      Martina Mušković, Martin Lončarić, Ivana Ratkaj, Nela Malatesti
      European Journal of Medicinal Chemistry.2025; 282: 117063.     CrossRef
    • Biological evaluation of hydroxyapatite zirconium nanoparticle as a potential radiosensitizer for lung cancer X-ray induced photodynamic therapy
      Ahmad Kurniawan, Isa Mahendra, Muhamad Basit Febrian, Marhendra Satria Utama, Julia Windi Gunadi, Roro Wahyudianingsih, Ronny Lesmana, Iim Halimah, Maula Eka Sriyani, Eva Maria Widyasari, Teguh Hafiz Ambar Wibawa, Asep Rizaludin, Crhisterra Ellen Kusumani
      Applied Radiation and Isotopes.2025; 217: 111615.     CrossRef
    • BODIPY-ruthenium(II) polypyridyl complexes: Synthesis, computational, spectroscopic, electrochemical, and singlet oxygen studies
      Jeremy Erb, Darcy Setter, Jake Swavey, Frederick Willits, Shawn Swavey
      Inorganica Chimica Acta.2024; 560: 121831.     CrossRef
    • Adhesive Bond Strength of Restorative Materials to Caries-Affected Dentin Treated with Antimicrobial Photodynamic Therapy: A Systematic Review and Meta-Analysis
      Yasser F. AlFawaz
      Photobiomodulation, Photomedicine, and Laser Surgery.2024; 42(2): 125.     CrossRef
    • Nano‐phototherapy: Favorable prospects for cancer treatment
      J. P. Jose Merlin, Anine Crous, Heidi Abrahamse
      WIREs Nanomedicine and Nanobiotechnology.2024;[Epub]     CrossRef
    • Photocrosslinked Co‐Assembled Amino Acid Nanoparticles for Controlled Chemo/Photothermal Combined Anticancer Therapy
      Tengfei Wang, Yun Qi, Eijiro Miyako, Alberto Bianco, Cécilia Ménard‐Moyon
      Small.2024;[Epub]     CrossRef
    • Nanotechnology‐mediated photodynamic therapy: Focus on overcoming tumor hypoxia
      Kave Moloudi, Heidi Abrahamse, Blassan P. George
      WIREs Nanomedicine and Nanobiotechnology.2024;[Epub]     CrossRef
    • Recent Advances on the Development of Early Transition Metal Complexes for Photo‐Assisted Cytotoxicity Applications
      Sharmila Wahengbam, Dulal Musib, Mithun Roy
      ChemistrySelect.2024;[Epub]     CrossRef
    • Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer
      Kanamat Efendiev, Polina Alekseeva, Kirill Linkov, Artem Shiryaev, Tatiana Pisareva, Aida Gilyadova, Igor Reshetov, Arina Voitova, Victor Loschenov
      Photodiagnosis and Photodynamic Therapy.2024; 45: 103969.     CrossRef
    • Photodynamic Therapy: Current Trends and Potential Future Role in the Treatment of Bladder Cancer
      Maxim Kochergin, Omar Fahmy, Anastasios Asimakopoulos, Gerit Theil, Kathleen Zietz, Johanna Bialek, Eugenio Tiberi, Georgios Gakis
      International Journal of Molecular Sciences.2024; 25(2): 960.     CrossRef
    • The Efficacy of Ten Different Adjunctive Measures in Patients with Nonsurgically Treated Peri-Implant Disease: A Network Meta-Analysis of Randomized Controlled Trials
      Xuepei Peng, Xingtong Guo, Yuwen Zhou
      Photobiomodulation, Photomedicine, and Laser Surgery.2024; 42(2): 99.     CrossRef
    • Bromine indirubin FLIM/PLIM sensors to measure oxygen in normoxic and hypoxic PDT conditions
      D.N.S. dos Santos, N. Naskar, E. Delgado-Pinar, K. Reess, J.S. Seixas de Melo, A. Rueck
      Photodiagnosis and Photodynamic Therapy.2024; 45: 103964.     CrossRef
    • Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging
      Marina V. Shirmanova, Maria M. Lukina, Marina A. Sirotkina, Liubov E. Shimolina, Varvara V. Dudenkova, Nadezhda I. Ignatova, Seiji Tobita, Vladislav I. Shcheslavskiy, Elena V. Zagaynova
      International Journal of Molecular Sciences.2024; 25(3): 1703.     CrossRef
    • Cancer‐Thylakoid Hybrid Membrane Camouflaged Thulium Oxide Nanoparticles with Oxygen Self‐Supply Capability for Tumor‐Homing Phototherapy
      Yu‐Cheng Zuo, Cong‐Min Huo, Yu Chen, Peng‐Li Ding, Si‐Ye Tong, Wei Xue, Jing‐Yi Zhu
      Advanced Healthcare Materials.2024;[Epub]     CrossRef
    • Photodynamic Therapy for Atherosclerosis
      Wiktoria Mytych, Dorota Bartusik-Aebisher, Aleksandra Łoś, Klaudia Dynarowicz, Angelika Myśliwiec, David Aebisher
      International Journal of Molecular Sciences.2024; 25(4): 1958.     CrossRef
    • EFFECTIVENESS OF PHOTODYNAMIC THERAPY IN THE TREATMENT OF ORAL CANDIDIASIS IN DENTAL PROSTHESIS USERS: A LITERATURE REVIEW
      Renally Leite Da Silva, Kelly Rayane Gustavo Dos Santos, Fernanda Ferreira Andrade, Taynah Shelry Lira Silva, Karen Gonçalves Da Silva, Matheus Andrews Dos Santos, Leon Trotsky Santana Da Silva, Maria Eduarda Martins Costa, Aline Dias Da Silva, Alessandro
      Revista Contemporânea.2024; 4(2): e3346.     CrossRef
    • Characteristics and Applications of Peptide Nucleic Acid in the Treatment of Infectious Diseases and the Effect of Antimicrobial Photodynamic Therapy on Treatment Effectiveness
      Zahra Javanmard, Maryam Pourhajibagher, Abbas Bahador
      Infectious Disorders - Drug Targets.2024;[Epub]     CrossRef
    • Biological activity of copper porphyrins
      Athulya Das, Thasnim P Mohammed, Muniyandi Sankaralingam
      Coordination Chemistry Reviews.2024; 506: 215661.     CrossRef
    • Advances in porphyrins and chlorins associated with polysaccharides and polysaccharides-based materials for biomedical and pharmaceutical applications
      Rafael F.N. Quadrado, Siara Silvestri, Jaqueline F. de Souza, Bernardo A. Iglesias, André R. Fajardo
      Carbohydrate Polymers.2024; 334: 122017.     CrossRef
    • Phototoxicity in vitro and safety in vivo of the emulsion photosensitizer based on furanocoumarins of Heracleum sosnowskyi
      Oleg A. Kulikov, Vasilisa I. Shlyapkina, Ekaterina P. Brodovskaya, Amina M. Al-khadj Aioub, Valentin P. Ageev, Mikhail N. Zharkov, Denis E. Yakobson, Daniil S. Sokushev, Nikolay A. Pyataev, Gleb B. Sukhorukov
      European Journal of Pharmaceutics and Biopharmaceutics.2024; 198: 114257.     CrossRef
    • Tools of clinical Photodynamic Therapy (PDT): A Mini Compendium
      Ron R Allison, Zheng Huang, India Dallimore, Keyvan Moghissi
      Photodiagnosis and Photodynamic Therapy.2024; 46: 104058.     CrossRef
    • Synthesis, characterization and revealing the sono-photochemical potential of new NIR BODIPY derivative
      Gürkan Karanlık
      Tetrahedron.2024; 157: 133949.     CrossRef
    • Green nanotech paradigm for enhancing sesquiterpene lactone therapeutics in cancer
      Mehak Zahra, Heidi Abrahamse, Blassan P. George
      Biomedicine & Pharmacotherapy.2024; 173: 116426.     CrossRef
    • Quantitative Changes in Pro-Oncogenic and Tumor-Suppressing MicroRNA in the Regional Lymph Node during Photodynamic Therapy of Experimental Breast Cancer
      A. V. Kabakov, O. V. Kazakov, A. F. Poveshchenko, V. N. Cherkas
      Bulletin of Experimental Biology and Medicine.2024; 176(4): 491.     CrossRef
    • A Systemic Review on Photodynamic Therapy: Emerging Technology with Healing Process
      Prachi Varshney, Yogesh Kumar, Devdhar Yadav, Amit Singh, Naga Rani Kagithala, Pramod Kumar Sharma, Omji Porwal, Neeraj Kumar Fuloria, Pradeep Kumar Sharma, Ashok Kumar Gupta, G.S.N. Koteswara Rao
      Current Cancer Therapy Reviews.2024; 20(3): 283.     CrossRef
    • Antimicrobial Photodynamic Therapy on Pseudomonas aeruginosa Using a Diode Laser and PhotoMed, Methyl Pheophorbide A, or RadachlorinⓇ
      Young-Kyu SONG, Keun-Dol YOOK, Ji-Won KIM
      Korean Journal of Clinical Laboratory Science.2024; 56(1): 52.     CrossRef
    • Far-red light-triggered cargo release from liposomes bound to a photosensitizer-cellulose nanofiber hydrogel
      Olga Lem, Puja Gangurde, Artturi Koivuniemi, Aleksi Keskinen, Alexander Efimov, Nikita Durandin, Timo Laaksonen
      Carbohydrate Polymers.2024; 336: 122134.     CrossRef
    • Research and Optimization of the Synthesis of GdF3:Tb X-Ray Phosphors for X-Ray Photodynamic Therapy
      P. Sh. Ustabaev, P. D. Zykova, V. V. Bakhmetev, E. I. Leonova
      Russian Journal of Bioorganic Chemistry.2024; 50(2): 522.     CrossRef
    • Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation
      Natalia S. Kuzmina, Ekaterina A. Fedotova, Petar Jankovic, Galina P. Gribova, Alexander V. Nyuchev, Alexey Yu. Fedorov, Vasilii F. Otvagin
      Pharmaceutics.2024; 16(4): 479.     CrossRef
    • The contradictory role of febuxostat in ABCG2 expression and potentiating hypericin-mediated photodynamic therapy in colorectal cancers
      Aaron King, Thomas Maisey, Erica L. Harris, James A. Poulter, David G. Jayne, M. Ibrahim Khot
      Photochemical & Photobiological Sciences.2024; 23(6): 1067.     CrossRef
    • Photoactivated riboflavin inhibits planktonic and biofilm growth of Candida albicans and non-albicans Candida species
      Nuratiqah Farah, Chee Woei Lim, Voon Kin Chin, Pei Pei Chong, Rusliza Basir, Wendy Wai Yeng Yeo, Sun Tee Tay, Sulin Choo, Tze Yan Lee
      Microbial Pathogenesis.2024; : 106665.     CrossRef
    • Chitosan mediated smart photodynamic therapy based novel drug delivery systems- a futuristic view
      Venkateshwaran Krishnaswami, Eshamugi Rajan, Gouranga Dutta, Selvakumar Muruganantham, Abimanyu Sugumaran, Jacob Raja SA
      Carbohydrate Polymer Technologies and Applications.2024; 7: 100510.     CrossRef
    • Advancements and challenges in brain cancer therapeutics
      Fan Bai, Yueyang Deng, Long Li, Ming Lv, Jamoliddin Razzokov, Qingnan Xu, Zhen Xu, Zhaowei Chen, Guojun Chen, Zhitong Chen
      Exploration.2024;[Epub]     CrossRef
    • Amphiphilic AIE Fluorescent Probe: A Dual-Functionality Strategy for Efficient Antibacterial Therapy Fluorescence Bioimaging against Staphylococcus aureus
      Yan Fang, Qi Wang, Yue Yao, Jie Mao, Guijin Liu, Junjian Li
      ACS Applied Bio Materials.2024; 7(6): 3758.     CrossRef
    • Polycationic Photosensitizers as Effective Anticancer Agents That Destroy Cancer Stem Cells, Cancer Vascularization and Induce Protective Desmoplastic Reaction around Lung Cancers
      Evgeniya Kogan, Gennady Meerovich, Saida Karshieva, Elena Makarova, Igor Romanishkin, Ekaterina Akhlyustina, Irina Meerovich, Nikolay Zharkov, Sergey Kharnas, Vladimir Levkin, Sofya Demura, Zhilong Chen, Victor Loschenov, Igor Reshetov
      Photonics.2024; 11(6): 485.     CrossRef
    • Cytotoxic and Immunomodulatory Effects of Hypericin as a Photosensitizer in Photodynamic Therapy Used on Skin Cell Cultures
      Magdalena Krupka-Olek, Andrzej Bożek, Zenon P. Czuba, Małgorzata Kłósek, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka
      Pharmaceutics.2024; 16(6): 696.     CrossRef
    • Exciting Bacteria to a Hypersensitive State for Enhanced Aminoglycoside Therapy by a Rationally Constructed AIE Luminogen
      Chao Chen, Xing Li, Yilin Wang, Yingshu Sun, Yixuan Bao, Jianyu Zhang, Ruoyao Zhang, Ryan T. K. Kwok, Jacky W. Y. Lam, Duo Mao, Peng Hou, Ben Zhong Tang
      Advanced Healthcare Materials.2024;[Epub]     CrossRef
    • Indocyanine green-loaded N-doped carbon quantum dot nanoparticles for effective photodynamic therapy and cell imaging of melanoma cancer: in vitro , ex vivo and in vivo s
      Hadiseh Mehravanfar, Nafiseh Farhadian, Khalil Abnous
      Journal of Drug Targeting.2024; 32(7): 820.     CrossRef
    • Inhomogeneous Au2S for Photoacoustic Imaging and Photodynamic Tumor Therapy Based on Different Forms of Energy Dissipation
      Ling Chang, Chao Liu, Zhaokui Jin, Kun Li, Xiang Ling
      ACS Nano.2024; 18(23): 14925.     CrossRef
    • Evaluating the potency of laser-activated antimicrobial photodynamic therapy utilizing methylene blue as a treatment approach for chronic periodontitis
      Manoj Kumar Karuppan Perumal, Remya Rajan Renuka, Prabhu Manickam Natarajan
      Frontiers in Oral Health.2024;[Epub]     CrossRef
    • Influence of Photodynamic Therapy with Subsequent Surgical Treatment of Experimental Breast Cancer on Quantitative Changes in miRNAs in a Mesenteric Lymph Node
      A. V. Kabakov, O. V. Kazakov, A. F. Poveshchenko, V. N. Cherkas, V. V. Kononchuk
      Bulletin of Experimental Biology and Medicine.2024; 177(2): 271.     CrossRef
    • Photodynamic Therapy for Atherosclerosis: Past, Present, and Future
      Yanqing Lin, Ruosen Xie, Tao Yu
      Pharmaceutics.2024; 16(6): 729.     CrossRef
    • In Vitro and In Vivo Antipsoriatic Efficacy of Protected and Unprotected Sugar–Zinc Phthalocyanine Conjugates
      Sebastian Makuch, Piotr Kupczyk, Marta Woźniak, Alicja Makarec, Maja Lipińska, Magdalena Klyta, Joanna Sulecka-Zadka, Wiesław Szeja, Mariachiara Gani, Valentina Rapozzi, Piotr Ziółkowski, Piotr Smoleński
      Pharmaceutics.2024; 16(6): 838.     CrossRef
    • Recent breakthroughs in graphene quantum dot-enhanced sonodynamic and photodynamic therapy
      Seyyed Mojtaba Mousavi, Masoomeh Yari Kalashgrani, Negar Javanmardi, Mohsen Riazi, Muhammad Hussnain Akmal, Vahid Rahmanian, Ahmad Gholami, Wei-Hung Chiang
      Journal of Materials Chemistry B.2024; 12(29): 7041.     CrossRef
    • Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer
      Neeraj S. Thakur, Nada Saleh, Ali Fahim Khan, Brototi Chakrabarty, Vibhuti Agrahari
      Journal of Photochemistry and Photobiology C: Photochemistry Reviews.2024; 59: 100665.     CrossRef
    • Highly functional duodenal stent with photosensitizers enables photodynamic therapy for metabolic syndrome treatment: Feasibility and safety study in a porcine model
      Chan Su Park, Hyun Jin Park, Ji Hoon Park, Jin Hee Lee, Hyun Jung Kee, Jung-Hoon Park, Jung Hyun Jo, Hee Seung Lee, Cheol Ryong Ku, Jeong Youp Park, Seungmin Bang, Jung Min Song, Kun Na, Sung Kwon Kang, Hwoon-Yong Jung, Moon Jae Chung
      APL Bioengineering.2024;[Epub]     CrossRef
    • Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions
      Peilin Lu, Dongxue Ruan, Meiqi Huang, Mi Tian, Kangshun Zhu, Ziqi Gan, Zecong Xiao
      Signal Transduction and Targeted Therapy.2024;[Epub]     CrossRef
    • Advances in laser and stem cell treatment: current technologies, limitations, and future prospects
      Seung Hoon Woo
      Medical Lasers.2024; 13(2): 75.     CrossRef
    • Metal-based nanoparticle in cancer treatment: lessons learned and challenges
      Ali Hheidari, Javad Mohammadi, Maryam Ghodousi, Mohammadreza Mahmoodi, Sina Ebrahimi, Esmail Pishbin, Abbas Rahdar
      Frontiers in Bioengineering and Biotechnology.2024;[Epub]     CrossRef
    • Treatment of aphthous ulcers with photodynamic therapy: A randomized controlled clinical study
      Cennet Neslihan Eroğlu, Erkan Feslihan, Büşra Karaca, Sadi Elasan
      Photodiagnosis and Photodynamic Therapy.2024; 49: 104284.     CrossRef
    • Photodynamic therapy for oral cancer: Mechanisms, efficacy, and clinical applications
      Shyamaladevi Babu, Madhan Krishnan
      Oral Oncology Reports.2024; 11: 100608.     CrossRef
    • The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
      Andrea Amaroli, Isabella Panfoli, Matteo Bozzo, Sara Ferrando, Simona Candiani, Silvia Ravera
      Cancers.2024; 16(14): 2580.     CrossRef
    • Carbon Dots in the Pathological Microenvironment: ROS Producers or Scavengers?
      Chen Dong, Yanan Wang, Tianxiang Chen, Wenzhi Ren, Changyong Gao, Xuehua Ma, Xiang Gao, Aiguo Wu
      Advanced Healthcare Materials.2024;[Epub]     CrossRef
    • Advances in Medicine: Photodynamic Therapy
      David Aebisher, Jakub Szpara, Dorota Bartusik-Aebisher
      International Journal of Molecular Sciences.2024; 25(15): 8258.     CrossRef
    • The Use of Photodynamic Therapy in the Treatment of Endometrial Cancer—A Review of the Literature
      Aleksandra Żołyniak-Brzuchacz, Edyta Barnaś, Dorota Bartusik-Aebisher, David Aebisher
      International Journal of Molecular Sciences.2024; 25(16): 8772.     CrossRef
    • Photosensitizers in photodynamic therapy: An advancement in cancer treatment
      Abimbola M. Oluwajembola, Wisdom D. Cleanclay, Abimbola F. Onyia, Bruno N. Chikere, Suleiman Zakari, Ebong Ndifreke, Opeyemi C. De Campos
      Results in Chemistry.2024; 10: 101715.     CrossRef
    • Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity
      Kimia Sadat Kazemi, Parisa Kazemi, Hassan Mivehchi, Kamyar Nasiri, Seyed Saman Eshagh Hoseini, Seyedeh Tabasom Nejati, Parnian Pour Bahrami, Shayan Golestani, Mohsen Nabi Afjadi
      Biological Procedures Online.2024;[Epub]     CrossRef
    • Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies
      Yingfeng Zhang, Jing Tian
      ACS Omega.2024; 9(36): 37459.     CrossRef
    • Photodynamic therapy in management of cutaneous leishmaniasis: A systematic review
      Naeem Ullah, Muhammad Sagar, Zain ul Abidin, Muhammad Ahsan Naeem, Syed Zaheer Ud Din, Iftikhar Ahmad
      Lasers in Medical Science.2024;[Epub]     CrossRef
    • Possible integration of artificial intelligence with photodynamic therapy and diagnosis: A review
      Nkune Williams Nkune, Heidi Abrahamse
      Journal of Drug Delivery Science and Technology.2024; 101: 106210.     CrossRef
    • Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology
      Beata Czarczynska-Goslinska, Tomasz Goslinski, Agata Roszak, Anna Froelich, Piotr Szyk, Dariusz T. Mlynarczyk, Lukasz Sobotta, Irena Budnik, Oliwia Kordyl, Tomasz Osmałek
      Methods and Protocols.2024; 7(5): 73.     CrossRef
    • Photodynamic therapy based on metal-organic framework in cancer treatment: A comprehensive review of integration strategies for synergistic combination therapies
      Maryam Karbasi, Mohammad Varzandeh, Minoo Karbasi, Amirali Iranpour Mobarakeh, Mahtab Falahati, Michael R. Hamblin
      Nano-Structures & Nano-Objects.2024; 40: 101315.     CrossRef
    • Synthesis and Antitumor Activity of Photosensitizer Eugenol Porphyrin Derivatives: A Combination Therapy of Chemotherapy and Photodynamic Therapy
      Hui Li, Chen Tang, Zhenhua Liu, Zejie Tian, Lei Shi, Lingyan Yang, Jun He, Wenbin Ai, Xufeng He, Yunmei Liu
      Applied Organometallic Chemistry.2024;[Epub]     CrossRef
    • Screening of photosensitizers-ATP binding cassette (ABC) transporter interactions in vitro
      Shruti Vig, Payal Srivastava, Idrisa Rahman, Renee Jaranson, Anika Dasgupta, Robert Perttilä, Petteri Uusimaa, Huang-Chiao Huang
      Cancer Drug Resistance.2024;[Epub]     CrossRef
    • Recent development of nanomaterials-based PDT to improve immunogenic cell death
      Qura Tul Ain
      Photochemical & Photobiological Sciences.2024; 23(10): 1983.     CrossRef
    • Chlorin e6‐Loaded Nanostructured Lipid Carriers Targeted by Angiopep‐2: Advancing Photodynamic Therapy in Glioblastoma
      Carlotta Pucci, Daniele De Pasquale, Andrea Degl'Innocenti, Margherita Montorsi, Andrea Desii, Marta Pero, Chiara Martinelli, Martina Bartolucci, Andrea Petretto, Gianni Ciofani
      Advanced Healthcare Materials.2024;[Epub]     CrossRef
    • Singlet oxygen generation by nanoassemblies containing porphyrin macrocycles: Steric and screening effects, energy transfer and competing processes
      Eduard I. Zenkevich, Marina V. Parkhats, Boris M. Dzhagarov, Christian von Borczyskowski
      Journal of Porphyrins and Phthalocyanines.2024; 28(09n10): 549.     CrossRef
    • Photodynamic Therapy: Past, Current, and Future
      David Aebisher, Sara Czech, Klaudia Dynarowicz, Maciej Misiołek, Katarzyna Komosińska-Vassev, Aleksandra Kawczyk-Krupka, Dorota Bartusik-Aebisher
      International Journal of Molecular Sciences.2024; 25(20): 11325.     CrossRef
    • Blood Cell Membrane-Coated Nanomaterials as a Versatile Biomimetic Nanoplatform for Antitumor Applications
      Hanchun Shen, Yongliang Ouyang, Liang Zhang, Jing Li, Shige Wang
      Nanomaterials.2024; 14(21): 1757.     CrossRef
    • Optical trapping of lipid bodies reveals increased cytoplasm viscosity in Candida tropicalis post antimicrobial photodynamic therapy
      D Carranza-Zuñiga, J A Ascencio-Rodríguez, T Spezzia-Mazzocco, R Ramos-García
      Journal of Optics.2024; 26(12): 125302.     CrossRef
    • Determinants of Photodynamic Therapy Resistance in Cancer Cells
      Alicja Dąbrowska, Jakub Mastalerz, Bartosz Wilczyński, Beata Osiecka, Anna Choromańska
      International Journal of Molecular Sciences.2024; 25(22): 12069.     CrossRef
    • Luminescent phosphor glasses with Sm2O3 for photodynamic therapy application
      Aiman Albekova, Kristýna Jílková, Martin Havlík Míka
      Ceramics International.2024;[Epub]     CrossRef
    • Combined Antibiotic and Photodynamic Therapies in Pseudomonas aeruginosa: From Synergy to Antagonism
      Amanda C. Zangirolami, Koteswara Rao Yerra, Vladislav V. Yakovlev, Kate C. Blanco, Vanderlei S. Bagnato
      Antibiotics.2024; 13(12): 1111.     CrossRef
    • 基于发光二极管阵列的胶囊型光动力治疗光源研究
      董晓曦 Dong Xiaoxi, 石霞飞 Shi Xiafei, 胡嘉参 Hu Jiacen, 钮鹏亮 Niu Pengliang, 阴慧娟 Yin Huijuan
      Laser & Optoelectronics Progress.2024; 61(23): 2317001.     CrossRef
    • Versatile Porphyrin Arrangements for Photodynamic Therapy—A Review
      Arleta Glowacka-Sobotta, Beata Czarczynska-Goslinska, Daniel Ziental, Marcin Wysocki, Maciej Michalak, Emre Güzel, Lukasz Sobotta
      Nanomaterials.2024; 14(23): 1879.     CrossRef
    • In vitro comparative effects of laser photodynamic therapy with methylene blue or aminolevulinic acid on oral squamous cell carcinoma cell line
      Maryam Khosravi, Amir Mansour Shirani, Maryam Ostadsharif, Ramin Saravani
      Dental Research Journal.2023;[Epub]     CrossRef
    • Laser treatment for choroidal melanoma: Current concepts
      Abhilasha Maheshwari, Paul T. Finger
      Survey of Ophthalmology.2023; 68(2): 211.     CrossRef
    • (Nano)platforms in bladder cancer therapy: Challenges and opportunities
      Milad Ashrafizadeh, Ali Zarrabi, Hassan Karimi‐Maleh, Afshin Taheriazam, Sepideh Mirzaei, Mehrdad Hashemi, Kiavash Hushmandi, Pooyan Makvandi, Ehsan Nazarzadeh Zare, Esmaeel Sharifi, Arul Goel, Lingzhi Wang, Jun Ren, Yavuz Nuri Ertas, Alan Prem Kumar, Yuz
      Bioengineering & Translational Medicine.2023;[Epub]     CrossRef
    • Photodynamic therapy in the treatment of condyloma acuminata: A systematic review of clinical trials
      Stephanie Amabella Prayogo, Hubert Andrew, Stefanny Cong, Kadek Devi Aninditha Intaran
      International Journal of STD & AIDS.2023; 34(2): 76.     CrossRef
    • Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands
      Yun Qian, Jialun Wang, Wenbo Bu, Xiaoyan Zhu, Ping Zhang, Yun Zhu, Xiaoli Fan, Cheng Wang
      Biomaterials Science.2023; 11(3): 704.     CrossRef
    • Effect of three different photosensitizers in photodynamic therapy on bond strength of a calcium silicate‐based sealer to radicular dentin
      Cihan Küden, Seda Nur Karakaş
      Australian Endodontic Journal.2023; 49(S1): 265.     CrossRef
    • Recent Photosensitizer Developments, Delivery Strategies and Combination‐based Approaches for Photodynamic Therapy†
      Nory Mariño‐Ocampo, Luciano Dibona‐Villanueva, Elizabeth Escobar‐Álvarez, Daniel Guerra‐Díaz, Daniel Zúñiga‐Núñez, Denis Fuentealba, José Robinson‐Duggon
      Photochemistry and Photobiology.2023; 99(2): 469.     CrossRef
    • Mitochondrial dysfunction mediates neuronal cell response to DMMB photodynamic therapy
      Raphael de Ávila Narciso Gomes, Alejandro Marmolejo-Garza, Floris-Jan Haan, Teresa Mitchell García, Tingting Chen, Mario Mauthe, Yollanda E. Moreira Franco Parisotto, Mario Minor Murakami, Suely Kazue Nagahashi Marie, Maurício S. Baptista, Amalia M. Dolga
      Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.2023; 1870(3): 119429.     CrossRef
    • A predictive model for personalization of nanotechnology-based phototherapy in cancer treatment
      Eli Varon, Gaddi Blumrosen, Orit Shefi
      Frontiers in Oncology.2023;[Epub]     CrossRef
    • Two Molecular Weights Holothurian Glycosaminoglycan and Hematoporphyrin Derivative-Photodynamic Therapy Inhibit Proliferation and Promote Apoptosis of Human Lung Adenocarcinoma Cells
      Dai Hao-Yu, Yu Ding-Yi, Xiao Bao-Hong, Sui Aihua, Ding Xiao-Qian, Lin Cun-Zhi
      Integrative Cancer Therapies.2023;[Epub]     CrossRef
    • Combination of photodynamic therapy and stimulator of interferon genes (STING) agonist inhibits colorectal tumor growth and recurrence
      Yang Hao, Sen Ma, Zili Gu, Alireza Haghparast, Timo Schomann, Zhenfeng Yu, Yuanyuan He, Xiaoxv Dong, Luis J Cruz, Peter ten Dijke
      Cancer Communications.2023; 43(4): 513.     CrossRef
    • Anthracene-Bridged Photosensitizers for Effective and Safe Photodynamic Therapy
      Jucai Gao, Hui Yang, Yaru Lu, Qiankun Shi, Shidang Xu, Wenbo Wu, Fang Hu, Bin Liu
      Chemistry of Materials.2023; 35(3): 1229.     CrossRef
    • Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine
      Arshadul Hak, Mohammad Sadik Ali, Sri Amruthaa Sankaranarayanan, Vinod Ravasaheb Shinde, Aravind Kumar Rengan
      ACS Applied Bio Materials.2023; 6(2): 349.     CrossRef
    • Advances in Liposome-Encapsulated Phthalocyanines for Photodynamic Therapy
      Jakub Rak, Martina Kabesova, Jiri Benes, Pavla Pouckova, David Vetvicka
      Life.2023; 13(2): 305.     CrossRef
    • Ablative Therapy in Non-HCC Liver Malignancy
      Tyler P. Robinson, Travis Pebror, Matthew E. Krosin, Leonidas G. Koniaris
      Cancers.2023; 15(4): 1200.     CrossRef
    • Encapsulation of Diiodo‐BODIPY in Sodium Dodecyl Sulfate Stabilized Cellulose Acetate Capsules for Enhanced Singlet Oxygen Production in Aqueous Solution
      Seda Demirel Topel
      ChemistrySelect.2023;[Epub]     CrossRef
    • Recent Advances of Material‐Decorated Photosynthetic Microorganisms and Their Aspects in Biomedical Applications
      Songhan Liu, Hanyu Yang, Ming Yao Ho, Bengang Xing
      Advanced Optical Materials.2023;[Epub]     CrossRef
    • Alteration of Mesenchymal Stem Cells Isolated from Glioblastoma Multiforme under the Influence of Photodynamic Treatment
      Kalina Tumangelova-Yuzeir, Krassimir Minkin, Ivan Angelov, Ekaterina Ivanova-Todorova, Ekaterina Kurteva, Georgi Vasilev, Jeliazko Arabadjiev, Petar Karazapryanov, Kaloyan Gabrovski, Lidia Zaharieva, Tsanislava Genova, Dobroslav Kyurkchiev
      Current Issues in Molecular Biology.2023; 45(3): 2580.     CrossRef
    • Connections between Metallic Nanoparticles and Chlorin e6—An Overview of Physicochemical and Biological Properties and Prospective Medical Applications
      Tomasz Koczorowski, Arleta Glowacka-Sobotta, Maciej Michalak, Dariusz T. Mlynarczyk, Emre Güzel, Tomasz Goslinski, Lukasz Sobotta
      Applied Sciences.2023; 13(6): 3933.     CrossRef
    • Novel nanoparticles prepared from isothiocyanate derivatives for phototherapy of tumor
      Yuguang Wang, Ning Wang, Yingying Du, Xu Jiang, Yanhui Liu, Yingpu Wang, Yaqing Feng, Ping Wang, Shuxian Meng
      Journal of Photochemistry and Photobiology B: Biology.2023; 242: 112701.     CrossRef
    • Recent Developments in Nanoparticle‐Based Photo‐Immunotherapy for Cancer Treatment
      Zhongyuan Guo, Audrey T. Zhu, Ronnie H. Fang, Liangfang Zhang
      Small Methods.2023;[Epub]     CrossRef
    • Cancer cell membrane-camouflaged and H2O2-activatable nanocomposites for synergistic chemotherapy and two-photon photodynamic therapy against melanoma
      Siyuan Gao, Fangmian Wei, Johannes Karges, Yukun Zhao, Liangnian Ji, Hui Chao
      Inorganic Chemistry Frontiers.2023; 10(9): 2716.     CrossRef
    • A Comprehensive Survey on the Expediated Anti-COVID-19 Options Enabled by Metal Complexes—Tasks and Trials
      Judy Gopal, Manikandan Muthu, Iyyakkannu Sivanesan
      Molecules.2023; 28(8): 3354.     CrossRef
    • Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy
      Martina Mušković, Rafaela Pokrajac, Nela Malatesti
      Pharmaceuticals.2023; 16(4): 613.     CrossRef
    • Effect of Hypericin-Mediated Photodynamic Therapy on the Secretion of Soluble TNF Receptors by Oral Cancer Cells
      Marcin Olek, Agnieszka Machorowska-Pieniążek, Zenon P. Czuba, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka
      Pharmaceutics.2023; 15(4): 1279.     CrossRef
    • Effect of antimicrobial photodynamic therapy using toluidine blue on dual-species biofilms of Candida albicans and Candida krusei
      Ana Beatriz Furtado Rodrigues, Juliene Cristina da Silva Passos, Maricilia Silva Costa
      Photodiagnosis and Photodynamic Therapy.2023; 42: 103600.     CrossRef
    • In vitro anti-tumoral activity of two versatile cationic porphyrins on melanoma cells
      Kelly A.D.F. Castro, Juliana Cristina Biazzotto, João P.C. Tomé, Roberto S. da Silva, Leandro M.O. Lourenço
      Journal of Porphyrins and Phthalocyanines.2023; 27(01n04): 712.     CrossRef
    • On the issue of diagnosis and treatment of skin pseudolymphoma on the example of a clinical case
      Olga Yu. Olisova, Elena S. Snarskaya, Natalya P. Teplyuk, Vladimir A. Varshavsky, Evgeniya S. Zolotareva, William Makhmudi
      Russian Journal of Skin and Venereal Diseases.2023; 26(2): 105.     CrossRef
    • Novel Chlorin e6-Curcumin Derivatives as a Potential Photosensitizer: Synthesis, Characterization, and Anticancer Activity
      Til Bahadur Thapa Magar, Jusuk Lee, Ji Hoon Lee, Juhee Jeon, Pallavi Gurung, Junmo Lim, Yong-Wan Kim
      Pharmaceutics.2023; 15(6): 1577.     CrossRef
    • Photodynamic Therapy in Oral Cancer: A Narrative Review
      Seyed Ali Mosaddad, Pegah Mahootchi, Zahra Rastegar, Benika Abbasi, Mostafa Alam, Kamyar Abbasi, Sadaf Fani-Hanifeh, Samira Amookhteh, Sima Sadeghi, Reza Sayyad Soufdoost, Maryam Yazdanparast, Artak Heboyan, Hamid Tebyaniyan, Gustavo Vicentis Oliveira Fer
      Photobiomodulation, Photomedicine, and Laser Surgery.2023; 41(6): 248.     CrossRef
    • Efficacy of photodynamic therapy in cutaneous leishmaniasis: A systematic review
      Lin Liu, Yuexi He, Jianmin Chang
      Photodiagnosis and Photodynamic Therapy.2023; 43: 103627.     CrossRef
    • Lysosome-Targeting Aggregation-Induced Emission Nanoparticle Enables Adoptive Macrophage Transfer-Based Precise Therapy of Bacterial Infections
      Peng Wang, Biru Wu, Min Li, Yuchen Song, Chengjian Chen, Guangxue Feng, Duo Mao, Fang Hu, Bin Liu
      ACS Nano.2023; 17(11): 10365.     CrossRef
    • Mechanism of action of an Ir(iii) complex bearing a boronic acid active as a H2O2-responsive photosensitizer: ROS generation and quinone methide release for GSH scavenging
      Pierraffaele Barretta, Gloria Mazzone
      Inorganic Chemistry Frontiers.2023; 10(12): 3686.     CrossRef
    • Solvothermal synthesis of rhombic shape GdF3:Tb3+ nanoparticles for biomedical applications
      E. A. Kuchma, O. E. Polozhentsev, I. A. Pankin, A. N. Bulgakov, P. A. Rud, A.  V. Soldatov
      South Russian Journal of Cancer.2023; 4(2): 39.     CrossRef
    • Photodynamic therapy of lung cancer with photosensitizers based on polycationic derivatives of synthetic bacteriochlorin (experimental study)
      Evgeniya A. Kogan, Gennady A. Meerovich, Saida Sh. Karshieva, Elena A. Makarova, Igor D. Romanishkin, Ekaterina V. Akhlyustina, Irina G. Meerovich, Nikolai V. Zharkov, Elizaveta V. Koudan, Tatiana A. Demura, Victor B. Loschenov
      Photodiagnosis and Photodynamic Therapy.2023; 42: 103647.     CrossRef
    • Light-activated cytotoxicity studies on Co(II) complexes having tridentate anthraquinone-based ligands
      Dhananjay Das, Namrata Sarma, Md Kausar Raza, Tridib K. Goswami
      Inorganica Chimica Acta.2023; 556: 121622.     CrossRef
    • Photodynamic therapy: a new approach to the treatment of Nontuberculous Mycobacterial skin and soft tissue infections
      Xiao Wang, Xiaoyu Wang, Xia Lei, Yongqing He, Tianzhen Xiao
      Photodiagnosis and Photodynamic Therapy.2023; 43: 103645.     CrossRef
    • Evaluating the safety and efficacy of aminolevulinic acid 20% topical solution activated by pulsed dye laser and blue light in the treatment of facial cutaneous squamous cell carcinoma in situ
      Mark S. Nestor, Haowei Han, Francesca M. Ceci, Alec Lawson, Anita Gade
      Journal of Cosmetic Dermatology.2023; 22(9): 2471.     CrossRef
    • 腔道肿瘤光动力诊疗内窥技术的发展及临床应用现状
      赵萌 Zhao Meng, 王荣峰 Wang Rongfeng, 路倚文 Lu Yiwen, 张晓刚 Zhang Xiaogang, 吴荣谦 Wu Rongqian, 吕毅 Yi Lü, 庞利辉 Pang Lihui
      Chinese Journal of Lasers.2023; 50(9): 0907202.     CrossRef
    • Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach
      Mehak Zahra, Alexander Chota, Heidi Abrahamse, Blassan P. George
      International Journal of Molecular Sciences.2023; 24(13): 10931.     CrossRef
    • Photodynamic therapy induced cell cycle arrest and cancer cell synchronization: review
      Kave Moloudi, Heidi Abrahamse, Blassan P. George
      Frontiers in Oncology.2023;[Epub]     CrossRef
    • Interactions of Mn complexes with DNA: the relevance of therapeutic applications towards cancer treatment
      Oishi Mallick Ganguly, Shuvojit Moulik
      Dalton Transactions.2023; 52(31): 10639.     CrossRef
    • A Curated Graphene Quantum Dot-Porphyrin-Based Photosensitizer for Effective Singlet Oxygen Generation through Energy Transfer
      Riya Sinha, Odhavia Sahil Jaykishan, Pradipta Purkayastha
      Langmuir.2023; 39(31): 11108.     CrossRef
    • Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems
      Wan Su Yun, Jeongrae Kim, Dong-Kwon Lim, Dong-Hwee Kim, Seong Ik Jeon, Kwangmeyung Kim
      Nanomaterials.2023; 13(15): 2225.     CrossRef
    • Advanced Light Source Technologies for Photodynamic Therapy of Skin Cancer Lesions
      José Francisco Algorri, José Miguel López-Higuera, Luís Rodríguez-Cobo, Adolfo Cobo
      Pharmaceutics.2023; 15(8): 2075.     CrossRef
    • The Contribution of Oxidative Stress to NF1-Altered Tumors
      Elisabetta Kuhn, Federica Natacci, Massimo Corbo, Luigi Pisani, Stefano Ferrero, Gaetano Bulfamante, Donatella Gambini
      Antioxidants.2023; 12(8): 1557.     CrossRef
    • Photodynamic Therapy Effects on Oral Dysplastic Keratinocyte Cell Cultures: A Systematic Review
      Dario Di Stasio, Antonio Romano, Fausto Fiori, Remo Antonio Assanti, Eleonora Ruocco, Maria Grazia Bottone, Alberta Lucchese
      Applied Sciences.2023; 13(16): 9075.     CrossRef
    • Cancer immunotheranostics using bioactive nanocoated photosynthetic bacterial complexes
      Sheethal Reghu, Seigo Iwata, Satoru Komatsu, Takafumi Nakajo, Eijiro Miyako
      Nano Today.2023; 52: 101966.     CrossRef
    • Emerging role of photodynamic therapy as an adjunct to nonsurgical periodontal therapy on periodontal status and glycemic control in patients with type 2 diabetes: A clinical study
      Prasanth Thankappan, Dharmarajan Gopalakrishnan, Sumita Manandhar
      Journal of Indian Society of Periodontology.2023; 27(5): 508.     CrossRef
    • Cobalt(III) dibromo-BODIPY-8-hydroxyquinolinate for mitochondria-targeted red light photodynamic therapy
      Avishek Jana, Subhadarsini Sahoo, Subhadeep Paul, Somarupa Sahoo, Chelliah Jayabaskaran, Akhil R. Chakravarty
      Polyhedron.2023; 245: 116656.     CrossRef
    • Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment
      Rakhi Yadav, Priyanku Pradip Das, Sunil Sharma, Sounok Sengupta, Deepak Kumar, Ram Sagar
      Medical Oncology.2023;[Epub]     CrossRef
    • Recent developments in photodynamic therapy and its application against multidrug resistant cancers
      Debalina Bhattacharya, Mainak Mukhopadhyay, Kumar Shivam, Satyajit Tripathy, Ranjan Patra, Arindam Pramanik
      Biomedical Materials.2023; 18(6): 062005.     CrossRef
    • Activating MoO3 nanobelts via aqueous intercalation as a near‐infrared type I photosensitizer for photodynamic periodontitis treatment
      Bohua Li, Dandan Chu, Haohao Cui, Zhanrong Li, Zhan Zhou, Chaoliang Tan, Jingguo Li
      SmartMat.2023;[Epub]     CrossRef
    • Synthesis and biological evaluation of bi-modal BODIPY-conjugated Hoechst applicable for Auger-electron and photodynamic cancer therapy
      Ryotaro Onoue, Hiroyuki Watanabe, Masahiro Ono
      Bioorganic & Medicinal Chemistry Letters.2023; 96: 129534.     CrossRef
    • Mechanistic investigation of photodynamic therapy using Visudyne in human KB carcinoma cells
      Sakkarapalayam M. Mahalingam, Natarajan Arumugam, Ling Shing Wong, Anto Cordelia Tanislaus Antony Dhanapal, Sinouvassane Djearamane
      Journal of King Saud University - Science.2023; 35(8): 102871.     CrossRef
    • Frozen (capsulitis) of shoulder Treated by LED Red light: A case report
      Keyvan Moghissi, Kate Dixon, Andrew Edwards
      Photodiagnosis and Photodynamic Therapy.2023; 44: 103764.     CrossRef
    • Multimodal OCT Control for Early Histological Signs of Vulvar Lichen Sclerosus Recurrence after Systemic PDT: Pilot Study
      Arseniy Potapov, Lev Matveev, Alexander Moiseev, Elena Sedova, Maria Loginova, Maria Karabut, Irina Kuznetsova, Viktoriya Levchenko, Elena Grebenkina, Sergey Gamayunov, Stefka Radenska-Lopovok, Marina Sirotkina, Natalia Gladkova
      International Journal of Molecular Sciences.2023; 24(18): 13967.     CrossRef
    • Exploring Thioxanthone Derivatives as Singlet Oxygen Photosensitizers for Photodynamic Therapy at the Near-IR Region
      Pandiyan Sivasakthi, Pralok K. Samanta
      The Journal of Physical Chemistry A.2023; 127(42): 8900.     CrossRef
    • PDT-Induced Activation Enhanced by Hormone Response to Treatment
      Wojciech Domka, Dorota Bartusik-Aebisher, Maria Przygoda, Klaudia Dynarowicz, Jerzy Tomik, David Aebisher
      International Journal of Molecular Sciences.2023; 24(18): 13917.     CrossRef
    • Chromophore-Targeting Precision Antimicrobial Phototherapy
      Sebastian Jusuf, Pu-Ting Dong
      Cells.2023; 12(22): 2664.     CrossRef
    • Peroxide-Simulating and GSH-Depleting Nanozyme for Enhanced Chemodynamic/Photodynamic Therapy via Induction of Multisource ROS
      Gang Liu, Mingyu Liu, Xiujing Li, Xiaorong Ye, Kaiming Cao, Yangzhong Liu, Yue Yu
      ACS Applied Materials & Interfaces.2023; 15(41): 47955.     CrossRef
    • AN IN SILICO PHARMACOKINETIC INVESTIGATION OF ORGANIC LUMINOGENS: UNDERSTANDING THE NIR AIEGENS AND THEIR INTERACTIONS WITH SERUM ALBUMINS
      Harun NALÇAKAN, Gülbin KURTAY, Dilara Tuğçe ÖZDİL, Züleyha YILMAZ
      Ankara Universitesi Eczacilik Fakultesi Dergisi.2023; 48(1): 6.     CrossRef
    • Modern Photodynamic Glioblastoma Therapy Using Curcumin- or Parietin-Loaded Lipid Nanoparticles in a CAM Model Study
      Jan Schulze, Lisa Schöne, Abdallah M. Ayoub, Damiano Librizzi, Muhammad Umair Amin, Konrad Engelhardt, Behrooz H. Yousefi, Lena Bender, Jens Schaefer, Eduard Preis, Michaela Schulz-Siegmund, Christian Wölk, Udo Bakowsky
      ACS Applied Bio Materials.2023; 6(12): 5502.     CrossRef
    • Electronic spectroscopy of gemcitabine and derivatives for possible dual-action photodynamic therapy applications
      Abdelazim M. A. Abdelgawwad, Daniel Roca-Sanjuán, Antonio Francés-Monerris
      The Journal of Chemical Physics.2023;[Epub]     CrossRef
    • Immunomodulatory Effect of Hypericin-Mediated Photodynamic Therapy on Oral Cancer Cells
      Marcin Olek, Agnieszka Machorowska-Pieniążek, Zenon P. Czuba, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka
      Pharmaceutics.2023; 16(1): 42.     CrossRef
    • Efficacy of 5-aminolevulinic acid-based photodynamic therapy in different subtypes of canine mammary gland cancer cells
      Ozge Turna, Aslihan Baykal, Elif Sozen Kucukkara, Ozge Ozten, Asuman Deveci Ozkan, Gamze Guney Eskiler, Ali Furkan Kamanli, Cemil Bilir, Salih Zeki Yildiz, Suleyman Kaleli, Melih Ucmak, Guven Kasikci, Hyun Soo Lim
      Lasers in Medical Science.2022; 37(2): 867.     CrossRef
    • Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy
      Tushar Dubey, Subashchandrabose Chinnathambi
      Small GTPases.2022; 13(1): 183.     CrossRef
    • Riboflavin mediated photo-illumination for bonding zirconia to tooth structure
      Selma Saadaldin, Alhanoof Aldegheishem, Elzahraa Eldwakhly, Marwa Salah Mostafa, Mai Soliman
      Materials Technology.2022; 37(11): 1766.     CrossRef
    • Research progress of azido-containing Pt(IV) antitumor compounds
      Meilin Mu, Jiuyu Zhan, Xiaohan Dai, Hongwei Gao
      European Journal of Medicinal Chemistry.2022; 227: 113927.     CrossRef
    • Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment
      Zheng Yang Jin, Hira Fatima, Yue Zhang, Zongping Shao, Xiang Jian Chen
      Advanced Therapeutics.2022;[Epub]     CrossRef
    • Photodynamic therapy associated with nanomedicine strategies for treatment of human squamous cell carcinoma: A systematic review and meta-analysis
      Túlio Morandin Ferrisse, Analú Barros de Oliveira, Amanda Koberstain Surur, Helen Sordi Buzo, Fernanda Lourenção Brighenti, Carla Raquel Fontana
      Nanomedicine: Nanotechnology, Biology and Medicine.2022; 40: 102505.     CrossRef
    • Sonication - and γ-ray-mediated biomolecule-liquid metal nanoparticlization in cancer optotheranostics
      Qi Yun, Atsushi Kimura, Mitsumasa Taguchi, Eijiro Miyako
      Applied Materials Today.2022; 26: 101302.     CrossRef
    • Synergetic lethal energy depletion initiated by cancer cell membrane camouflaged nano-inhibitor for cancer therapy
      Fudan Dong, Qikun Jiang, Lingxiao Li, Tian Liu, Shiyi Zuo, Lin Gao, Mengna Fang, Yanlin Gao, Bingjun Sun, Cong Luo, Zhonggui He, Jin Sun
      Nano Research.2022; 15(4): 3422.     CrossRef
    • Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy
      Yang Hao, Chih Kit Chung, Zhenfeng Yu, Ruben V. Huis in ‘t Veld, Ferry A. Ossendorp, Peter ten Dijke, Luis J. Cruz
      Pharmaceutics.2022; 14(1): 120.     CrossRef
    • DFT Study on the Substituent Effect of Anticancer Picoline-Diazido-Pt(IV) Compounds
      Meilin Mu, Hongwei Gao
      Frontiers in Oncology.2022;[Epub]     CrossRef
    • Synthesis, Characterization and Biodistribution of GdF3:Tb3+@RB Nanocomposites
      Oleg E. Polozhentsev, Ilia A. Pankin, Darya V. Khodakova, Pavel V. Medvedev, Anna S. Goncharova, Aleksey Yu. Maksimov, Oleg I. Kit, Alexander V. Soldatov
      Materials.2022; 15(2): 569.     CrossRef
    • EGFR-Targeted Photodynamic Therapy
      Luca Ulfo, Paolo Emidio Costantini, Matteo Di Giosia, Alberto Danielli, Matteo Calvaresi
      Pharmaceutics.2022; 14(2): 241.     CrossRef
    • Effect of photodynamic therapy on resin-dentin bonding interface using different illumination times
      Meng Zhang, Jia Guo, Xi Chen, Mengjie Gao
      Photodiagnosis and Photodynamic Therapy.2022; 38: 102747.     CrossRef
    • Antibody guided activatable NIR photosensitizing system for fluorescently monitored photodynamic therapy with reduced side effects
      Ebaston Thankarajan, Helena Tuchinsky, Sarit Aviel-Ronen, Andrii Bazylevich, Gary Gellerman, Leonid Patsenker
      Journal of Controlled Release.2022; 343: 506.     CrossRef
    • Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy
      Tomasz Piotr Kubrak, Przemysław Kołodziej, Jan Sawicki, Anna Mazur, Katarzyna Koziorowska, David Aebisher
      Molecules.2022; 27(4): 1192.     CrossRef
    • Evaluation of photocytotoxicity liposomal form of furanocoumarins Sosnowsky's hogweed
      Oleg A. Kulikov, Valentin P. Ageev, Ekaterina P. Brodovskaya, Vasilisa I. Shlyapkina, Pavel S. Petrov, Mikhail N. Zharkov, Denis E. Yakobson, Igor V. Maev, Gleb B. Sukhorukov, Nikolay A. Pyataev
      Chemico-Biological Interactions.2022; 357: 109880.     CrossRef
    • Photodynamic Therapeutic Effect of Nanostructured Metal Sulfide Photosensitizers on Cancer Treatment
      Daysi Diaz-Diestra, Hanna Madadi Gholipour, Marjan Bazian, Bibek Thapa, Juan Beltran-Huarac
      Nanoscale Research Letters.2022;[Epub]     CrossRef
    • Thiol-reacting toluidine blue derivatives: Synthesis, photophysical properties and covalent conjugation with human serum albumin
      Nory Mariño-Ocampo, Juan S. Reyes, Germán Günther, Belinda Heyne, Denis Fuentealba
      Dyes and Pigments.2022; 201: 110225.     CrossRef
    • Current Therapy and Therapeutic Targets for Microsporidiosis
      Junhong Wei, Zhihui Fei, Guoqing Pan, Louis M. Weiss, Zeyang Zhou
      Frontiers in Microbiology.2022;[Epub]     CrossRef
    • Hematoporphyrin Is a Promising Sensitizer for Dual-Frequency Sono-photodynamic Therapy in Mice Breast Cancer
      Tahereh Khani, Majid Jadidi, Hadi Hasanzadeh, Shima Moshfegh, Shima Saeedi, Shoka Shahryari, Raheb Ghorbani
      International Journal of Cancer Management.2022;[Epub]     CrossRef
    • Glutathione-sensitive IPI-549 nanoparticles synergized with photodynamic Chlorin e6 for the treatment of breast cancer
      Mengjia Yang, Xiaojun Lv, Siwen Zhan, Mengli Lu, Xueqiong Zhang, Tong Qiu
      Nanotechnology.2022; 33(23): 235101.     CrossRef
    • Metal-based complexes against SARS-CoV-2
      Kyriacos Ioannou, Manos C. Vlasiou
      BioMetals.2022; 35(4): 639.     CrossRef
    • Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy
      Hira Fatima, Zheng Yang Jin, Zongping Shao, Xiang Jian Chen
      Journal of Colloid and Interface Science.2022; 621: 440.     CrossRef
    • Efficacy of curcumin-mediated antibacterial photodynamic therapy for oral antisepsis: A systematic review and network meta-analysis of randomized clinical trials
      Túlio Morandin Ferrisse, Luana Mendonça Dias, Analú Barros de Oliveira, Claudia Carolina Jordão, Ewerton Garcia de Oliveira Mima, Ana Cláudia Pavarina
      Photodiagnosis and Photodynamic Therapy.2022; 39: 102876.     CrossRef
    • In vitro study on the effects of photodynamic inactivation using methyl pheophorbide a, PhotoMed, PhotoCure, and 660 nm diode laser on Candida albicans
      Keun-Dol Yook, ji-won kim, Young-Kyu Song
      Photodiagnosis and Photodynamic Therapy.2022; 38: 102871.     CrossRef
    • Photodynamic therapy in the treatment of rosacea: A systematic review
      Anqi Li, Rouyu Fang, Xuming Mao, Qiuning Sun
      Photodiagnosis and Photodynamic Therapy.2022; 38: 102875.     CrossRef
    • Preliminary low-dose photodynamic exposure to skin cancer with chlorin e6 photosensitizer
      K.T. Efendiev, P.M. Alekseeva, A.A. Shiryaev, A.S. Skobeltsin, I.L. Solonina, A.S. Fatyanova, I.V. Reshetov, V.B. Loschenov
      Photodiagnosis and Photodynamic Therapy.2022; 38: 102894.     CrossRef
    • Edge-rich atomic-layered BiOBr quantum dots for photocatalytic molecular oxygen activation
      Yuxi Guo, Hao Wen, Tao Zhong, Hongwei Huang, Zhan Lin
      Chemical Engineering Journal.2022; 445: 136776.     CrossRef
    • Advances in diagnostics and treatment of cutaneous lymphoid hyperplasia
      Olga Yu. Olisova, Ekaterina M. Anpilogova, Khadizhat S. Kosumova, Elena E. Nikulina
      Russian Journal of Skin and Venereal Diseases.2022; 24(5): 429.     CrossRef
    • Applications of Gold and Silver Nanoparticles in Theranostics
      R. Sakthi Devi, Agnishwar Girigoswami, M. Siddharth, Koyeli Girigoswami
      Applied Biochemistry and Biotechnology.2022; 194(9): 4187.     CrossRef
    • Farnesol as a potentiator of antimicrobial photodynamic inactivation on Enterococcus faecalis
      Andressa Mayumi Namba, Evelyn Luzia de Souza Santos, Maíra Terra Garcia, Felipe de Camargo Ribeiro, Lívia Mara Alves Figueiredo-Godoi, Rodnei Dennis Rossoni, Juliana Campos Junqueira
      Photodiagnosis and Photodynamic Therapy.2022; 39: 102928.     CrossRef
    • Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sono‐Photodynamic Therapy
      Marcin Wysocki, Beata Czarczynska‐Goslinska, Daniel Ziental, Maciej Michalak, Emre Güzel, Lukasz Sobotta
      ChemMedChem.2022;[Epub]     CrossRef
    • On the Pathomorphological Pattern of the Efficiency of Photodynamic Therapy of Murine Melanoma B16 Using a New Photosensitizer Based on Chlorin e6 Conjugate with a Prostate-Specific Membrane Antigen
      Olga B. Abramova, Grigory A. Demyashkin, Valentina V. Drozhzhina, Nina D. Yakovleva, Ekaterina A. Kozlovtseva, Tatiana P. Sivovolova, Petr V. Shegay, Sergey A. Ivanov, Andrey D. Kaprin
      Molecules.2022; 27(11): 3445.     CrossRef
    • The Enhancement of Antimicrobial Photodynamic Therapy of Escherichia Coli by a Functionalized Combination of Photosensitizers: In Vitro Examination of Single Cells by Quantitative Phase Imaging
      Aleksandra Pietrowska, Iwona Hołowacz, Agnieszka Ulatowska-Jarża, Mateusz Guźniczak, Anna K. Matczuk, Alina Wieliczko, Mirela Wolf-Baca, Igor Buzalewicz
      International Journal of Molecular Sciences.2022; 23(11): 6137.     CrossRef
    • Photodynamic Therapy in Combination with the Hepatitis B Core Virus-like Particles (HBc VLPs) to Prime Anticancer Immunity for Colorectal Cancer Treatment
      Yang Hao, Zili Gu, Zhenfeng Yu, Timo Schomann, Sana Sayedipour, Julio C. Aguilar, Peter ten Dijke, Luis J. Cruz
      Cancers.2022; 14(11): 2724.     CrossRef
    • On the mechanisms of photodynamic action of photosensitizers based on polycationic derivatives of synthetic bacteriochlorin against human lung cancer cells A549 (in vitro study)
      Evgeniya A. Kogan, Gennady A. Meerovich, Saida Sh. Karshieva, Elena A. Makarova, Igor D. Romanishkin, Ekaterina V. Akhlyustina, Irina G. Meerovich, Nikolai V. Zharkov, Tatiana A. Demura, Zhi-Long Chen, Elizaveta V. Koudan, Ivan P. Angelov, Victor B. Losch
      Photodiagnosis and Photodynamic Therapy.2022; 39: 102955.     CrossRef
    • Reactive oxygen nano-generators for cancer therapy
      Dnyaneshwar Kalyane, Devendra Choudhary, Suryanarayana Polaka, Hanmant Goykar, Tukaram Karanwad, Kuldeep Rajpoot, Rakesh Kumar Tekade
      Progress in Materials Science.2022; 130: 100974.     CrossRef
    • MXenes in photomedicine: advances and prospects
      Siavash Iravani, Rajender S. Varma
      Chemical Communications.2022; 58(53): 7336.     CrossRef
    • The combinational application of photodynamic therapy and nanotechnology in skin cancer treatment: A review
      Fadya Adnane, Emad El-Zayat, Heba Mohamed Fahmy
      Tissue and Cell.2022; 77: 101856.     CrossRef
    • Ruthenium and iridium complexes bearing porphyrin moieties: PDT efficacy against resistant melanoma cells
      Nuno M.M. Moura, Kelly A.D.F. Castro, Juliana C. Biazzotto, Juliana A. Prandini, Carlos Lodeiro, Maria A.F. Faustino, Mário M.Q. Simões, Roberto S. da Silva, Maria G.P.M.S. Neves
      Dyes and Pigments.2022; 205: 110501.     CrossRef
    • Treatment of basal cell carcinoma: An overview
      Sheerja Bali, Eman Deif, Asha Rajeev
      Journal of Skin and Sexually Transmitted Diseases.2022; 4: 171.     CrossRef
    • GaIIItriarylcorroles with push–pull substitutions: synthesis, electronic structure and biomedical applications
      Yingjie Niu, Lin Wang, Yingxin Guo, Weihua Zhu, Rodah C. Soy, Balaji Babu, John Mack, Tebello Nyokong, Haijun Xu, Xu Liang
      Dalton Transactions.2022; 51(27): 10543.     CrossRef
    • Spatial and Temporal Resolution of the Oxygen-Independent Photoinduced DNA Interstrand Cross-Linking by a Nitroimidazole Derivative
      Abdelazim M. A. Abdelgawwad, Antonio Monari, Iñaki Tuñón, Antonio Francés-Monerris
      Journal of Chemical Information and Modeling.2022; 62(13): 3239.     CrossRef
    • Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review
      Saman Sargazi, Simge ER, Sultan Sacide Gelen, Abbas Rahdar, Muhammad Bilal, Rabia Arshad, Narges Ajalli, Muhammad Farhan Ali Khan, Sadanand Pandey
      Journal of Drug Delivery Science and Technology.2022; 75: 103605.     CrossRef
    • Luminescence of singlet oxygen generated by fullerene C60 - aminopropylsilica nanocomposites

      Functional Materials.2022;[Epub]     CrossRef
    • Clinical Efficacy and Safety of Antimicrobial Photodynamic Therapy in Residual Periodontal Pockets during the Maintenance Phase
      Yasunori Yamashita, Megumi Mae, Masayuki Oohira, Yukio Ozaki, Seigo Ohba, Izumi Asahina, Atsutoshi Yoshimura
      Pharmaceuticals.2022; 15(8): 924.     CrossRef
    • Carbon dots with intrinsic theranostic properties for photodynamic therapy of oral squamous cell carcinoma
      Tingting Kong, Tongjun Liu, Yujun Zhang, Mingguo Wang
      Journal of Biomaterials Applications.2022; 37(5): 850.     CrossRef
    • The application of photodynamic therapy in plastic and reconstructive surgery
      Min Wu, Xiaoyu Huang, Lu Gao, Guoyu Zhou, Feng Xie
      Frontiers in Chemistry.2022;[Epub]     CrossRef
    • Application of Fullerenes as Photosensitizers for Antimicrobial Photodynamic Inactivation: A Review
      Wenjia Hou, Guorui Shi, Songze Wu, Jiayi Mo, Lan Shen, Xiuqiang Zhang, Yabin Zhu
      Frontiers in Microbiology.2022;[Epub]     CrossRef
    • NIR‐triggered Tandem Photothermal and Photochemical Cancer Therapy Based on Nanoscale MOFs under Hypoxic Conditions
      Miao He, Jian Yang, Ke Li, Qinghua Wang, Jinlou Gu
      ChemNanoMat.2022;[Epub]     CrossRef
    • Effect of Photodynamic Therapy on the microRNA Level in Breast Cancer Tissues of Female Wistar Rats
      O. V. Kazakov, A. V. Kabakov, A. F. Poveshchenko, V. V. Kononchuk, D. N. Strunkin, L. F. Gulyaeva, V. I. Konenkov
      Bulletin of Experimental Biology and Medicine.2022; 173(4): 444.     CrossRef
    • Melanoma-targeted photodynamic therapy based on hypericin-loaded multifunctional P123-spermine/folate micelles
      Ana Carolina Vieira de Oliveira, Flávia Amanda Pedroso de Morais, Katieli da Silva Souza Campanholi, Danielle Lazarin Bidóia, Rodolfo Bento Balbinot, Celso Vataru Nakamura, Wilker Caetano, Noboru Hioka, Odair dos Santos Monteiro, Cláudia Quintino da Rocha
      Photodiagnosis and Photodynamic Therapy.2022; 40: 103103.     CrossRef
    • Specific Antibodies to the Fragments of Meningococcal IgA1 Protease during the Formation of Immunity to Bacterial Infections
      O. V. Kotel’nikova, Yu. A. Prokopenko, A. A. Zinchenko, O. A. Razgulyaeva, E. A. Nokel’, D. M. Karlinsky, L. S. Zhigis, L. D. Rumsh
      Bulletin of Experimental Biology and Medicine.2022; 173(4): 429.     CrossRef
    • An insight into photodynamic therapy towards treating major dermatological conditions
      Anuradha Dey, Gautam Singhvi, Anu Puri, Prashant Kesharwani, Sunil Kumar Dubey
      Journal of Drug Delivery Science and Technology.2022; 76: 103751.     CrossRef
    • Efficacy of Antimicrobial Photodynamic Therapy Mediated by Photosensitizers Conjugated with Inorganic Nanoparticles: Systematic Review and Meta-Analysis
      Túlio Morandin Ferrisse, Luana Mendonça Dias, Analú Barros de Oliveira, Cláudia Carolina Jordão, Ewerton Garcia de Oliveira Mima, Ana Claudia Pavarina
      Pharmaceutics.2022; 14(10): 2050.     CrossRef
    • Development of a Liposomal form of Furanocoumarins and Evaluation of its Antitumor Efficacy
      O. A. Kulikov, V. P. Ageev, V. I. Shlyapkina, A. V. Zaborowskii, L. A. Tararina, D. V. Yunina, D. N. Andreev, K. R. Zainutdinova, N. A. Pyataev
      Pharmaceutical Chemistry Journal.2022; 56(7): 979.     CrossRef
    • Characterization of resistant MCF-7 breast cancer cells developed by repeated cycles of photodynamic therapy
      Eric Chekwube Aniogo, Blassan P. George, Heidi Abrahamse
      Frontiers in Pharmacology.2022;[Epub]     CrossRef
    • Europium-Containing Conjugate for Photodynamic Therapy of Malignant Neoplasms
      O. V. Shevchenko, N. G. Plekhova, M. A. Medkov, K. A. Parichuk, V. I. Apanasevich, I. G. Tananaev, A. A. Yudakov, P. A. Lukyanov
      Russian Journal of Inorganic Chemistry.2022; 67(9): 1361.     CrossRef
    • Oxygen-supplied electrotherapy for enhanced photodynamic synergistic therapy overcomes hypoxia tumor microenvironment
      Chaozhou Li, Hui Tan, Ruitao Lu, Sainan Qin, Xiangying Meng, Han Zhang, Zhongjian Xie
      Nanophotonics.2022; 11(22): 5077.     CrossRef
    • The Therapeutic Efficacy of Punica granatum and Its Bioactive Constituents with Special Reference to Photodynamic Therapy
      Nosipho Thembekile Fakudze, Eric Chekwube Aniogo, Blassan P. George, Heidi Abrahamse
      Plants.2022; 11(21): 2820.     CrossRef
    • Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities
      Qin Xue, Jingliang Zhang, Jianhua Jiao, Weijun Qin, Xiaojian Yang
      Frontiers in Oncology.2022;[Epub]     CrossRef
    • An Analysis of the Effects of In Vitro Photodynamic Therapy on Prostate Cancer Tissue by Histopathological Examination and Magnetic Resonance Imaging
      David Aebisher, Michał Osuchowski, Dorota Bartusik-Aebisher, Magdalena Krupka-Olek, Klaudia Dynarowicz, Aleksandra Kawczyk-Krupka
      International Journal of Molecular Sciences.2022; 23(19): 11354.     CrossRef
    • Possible Mechanisms of Resistance Development to Photodynamic Therapy (PDT) In Vulvar Cancer Cells
      Beata Joanna Mossakowska, Anna Fabisiewicz, Barbara Tudek, Janusz Aleksander Siedlecki
      International Journal of Molecular Sciences.2022; 23(23): 14689.     CrossRef
    • Construction of photo-induced zinc-doped carbon dots based on drug-resistant bactericides and their application for local treatment
      Zhuoling Zhong, Yaoyao Zhang, Xiaoyun Fu, Shuyao Liu, Chuanwei Zhang, Weijie Guo, Xiaoping Xu, Liyun Liao
      Nanoscale Advances.2022; 4(24): 5365.     CrossRef
    • Accumulation Dynamics of a Photosensitizer Liposomal Borated Chlorine e6 in Various Morphological Types of Experimental Tumors
      O. B. Abramova, V. V. Drozhzhina, E. A. Beregovskaya, T. P. Churikova, M. A. Kaplan
      Biology Bulletin.2022; 49(11): 2134.     CrossRef
    • Clinical Efficacy and Safety of Antimicrobial Photodynamic Therapy in Residual Periodontal Pockets During the Maintenance Phase
      yasunori yamashita, Megumi Mae, Masayuki Oohira, Yukio Ozaki, Seigo Ohba, Izumi Asahina, Atsutoshi Yoshimura
      SSRN Electronic Journal .2022;[Epub]     CrossRef
    • Melanoma-Targeted Photodynamic Therapy Based on Hypericin-Loaded Multifunctional P123-Spermine/Folate Micelles
      Renato Sonchini Gonçalves, Ana Carolina Vieira de Oliveira, Flávia Amanda Pedroso de Morais, Katieli da Silva Souza Campanholi, Danielle Lazarin Bidóia, Rodolfo Bento Balbinot, Celso Vataru Nakamura, Wilker Caetano, Noboru Hioka, Odair dos Santos Monteiro
      SSRN Electronic Journal .2022;[Epub]     CrossRef
    • Analysis and Data-Based Modeling of the Photochemical Reaction Dynamics of the Induced Singlet Oxygen in Light Therapies
      Tianfeng Wang, Jianfei Dong, Guoqi Zhang
      IEEE Transactions on Biomedical Engineering.2022; 69(11): 3427.     CrossRef
    • The effect of indocyanine green-mediated photodynamic therapy in healing of experimentally induced oral mucosal traumatic ulcer in rat
      Azadeh Andisheh-Tadbir, Arash Yaghoubi, Nader Tanideh, Maryam Mardani
      Lasers in Medical Science.2021; 36(3): 611.     CrossRef
    • Synthesis of sulfanyl porphyrazines with bulky peripheral substituents – Evaluation of their photochemical properties and biological activity
      Michal Falkowski, Malgorzata Kucinska, Jaroslaw Piskorz, Ewelina Wieczorek-Szweda, Lukasz Popenda, Stefan Jurga, Adam Sikora, Dariusz T. Mlynarczyk, Marek Murias, Michal P. Marszall, Tomasz Goslinski
      Journal of Photochemistry and Photobiology A: Chemistry.2021; 405: 112964.     CrossRef
    • The Impact of Photosensitizer Selection on Bactericidal Efficacy Of PDT against Cariogenic Biofilms: A Systematic Review and Meta-Analysis
      Maurício Ítalo Silva Teófilo, Teresa Maria Amorim Zaranza de Carvalho Russi, Paulo Goberlanio de Barros Silva, Abdulrahman A. Balhaddad, Mary Anne S. Melo, Juliana P.M.L. Rolim
      Photodiagnosis and Photodynamic Therapy.2021; 33: 102046.     CrossRef
    • Chlorin e6 embedded in phospholipid nanoparticles equipped with specific peptides: Interaction with tumor cells with different aminopeptidase N expression
      Tatyana I. Torkhovskaya, Lyubov V. Kostryukova, Yulia A. Tereshkina, Elena G. Tikhonova, Galina E. Morozevich, Anna D. Plutinskaya, Alexey Yu. Lupatov, Andrey A. Pankratov
      Biomedicine & Pharmacotherapy.2021; 134: 111154.     CrossRef
    • The Photosensitizing Efficacy of Micelles Containing a Porphyrinic Photosensitizer and KI against Resistant Melanoma Cells
      Kelly A. D. F. Castro, Letícia D. Costa, Juliana A. Prandini, Juliana C. Biazzotto, Augusto C. Tomé, Michael R. Hamblin, Maria da Graça P. M. S. Neves, M. Amparo F. Faustino, Roberto S. da Silva
      Chemistry – A European Journal.2021; 27(6): 1990.     CrossRef
    • Antimicrobial capacity and physico-chemical characteristics of adhesive resin containing riboflavin after photodynamic therapy
      Mohamed Hashem
      Photodiagnosis and Photodynamic Therapy.2021; 33: 102145.     CrossRef
    • Features of third generation photosensitizers used in anticancer photodynamic therapy: Review
      Ivan S. Mfouo-Tynga, Lucas D. Dias, Natalia M. Inada, Cristina Kurachi
      Photodiagnosis and Photodynamic Therapy.2021; 34: 102091.     CrossRef
    • Combination of talaporfin photodynamic therapy and Poly (ADP-Ribose) polymerase (PARP) inhibitor in gastric cancer
      Mamoru Tanaka, Makiko Sasaki, Taketo Suzuki, Hirotada Nishie, Hiromi Kataoka
      Biochemical and Biophysical Research Communications.2021; 539: 1.     CrossRef
    • Influence of two photodynamic therapy sessions and different photosensitizers on the bond strength of glass-fiber posts in different regions of intraradicular dentin
      Henrico Badaoui Strazzi-Sahyon, Paloma Pereira da Silva, Jaqueline Midori Nakao, Patrícia Zambon da Silva, Larissa Pereira Nunes, Marcelo Augusto Seron, Luciano Tavares Angelo Cintra, Paulo Henrique dos Santos, Gustavo Sivieri-Araujo
      Photodiagnosis and Photodynamic Therapy.2021; 33: 102193.     CrossRef
    • Push–pull effect to improve the electronic and optical properties of [7] circulene
      Payam Dana, Hamid Reza Shamlouei, Afsaneh Maleki, Sadif A. Shirvan
      Journal of the Chinese Chemical Society.2021; 68(6): 959.     CrossRef
    • Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies
      Yilin Zheng, Jinxiang Ye, Ziying Li, Haijun Chen, Yu Gao
      Acta Pharmaceutica Sinica B.2021; 11(8): 2197.     CrossRef
    • Laser Photobiomodulation (PBM)—A Possible New Frontier for the Treatment of Oral Cancer: A Review of In Vitro and In Vivo Studies
      Alessandro Del Vecchio, Gianluca Tenore, Maria Clotilde Luzi, Gaspare Palaia, Ahmed Mohsen, Daniele Pergolini, Umberto Romeo
      Healthcare.2021; 9(2): 134.     CrossRef
    • Optically activatable photosynthetic bacteria-based highly tumor specific immunotheranostics
      Xi Yang, Satoru Komatsu, Sheethal Reghu, Eijiro Miyako
      Nano Today.2021; 37: 101100.     CrossRef
    • Cholesterol-rich nanoemulsion (LDE) as a novel drug delivery system to diagnose, delineate, and treat human glioblastoma
      Antonio Claudio Tedesco, Emanoel P.O. Silva, Cristiano C. Jayme, Henrique L. Piva, Leonardo P. Franchi
      Materials Science and Engineering: C.2021; 123: 111984.     CrossRef
    • Impact of riboflavin mediated photodynamic disinfection around fixed orthodontic system infected with oral bacteria
      Muhammad Abdullah Kamran, Muhammad Qasim, Samuel Ebele Udeabor, Mohammad Shahul Hameed, Master Luqman Mannakandath, Ibrahim Alshahrani
      Photodiagnosis and Photodynamic Therapy.2021; 34: 102232.     CrossRef
    • Photodynamic Eradication of Trichophyton rubrum and Candida albicans
      Anton Valkov, Michael Zinigrad, Marina Nisnevitch
      Pathogens.2021; 10(3): 263.     CrossRef
    • Characterization of radical types, penetration profile and distribution pattern of the topically applied photosensitizer THPTS in porcine skin ex vivo
      S.B. Lohan, M. Kröger, J. Schleusener, M.E. Darvin, J. Lademann, I. Streit, M.C. Meinke
      European Journal of Pharmaceutics and Biopharmaceutics.2021; 162: 50.     CrossRef
    • DNA nanolantern as biocompatible drug carrier for simple preparation of a porphyrin/G-quadruplex nanocomposite photosensitizer with high photodynamic efficacy
      Yonghui Li, Junqing Chu, Dongxia Wang, Lina Zhu, Deming Kong
      Materials Chemistry Frontiers.2021; 5(7): 3139.     CrossRef
    • Photodynamic therapy with a new bacteriochlorin derivative: Characterization and in vitro studies
      Sebastião Pratavieira, Marciana Pierina Uliana, Nahryda Samara dos Santos Lopes, Maria Carolina Donatoni, Diana Rodriguez Linares, Fernanda de Freitas Anibal, Kleber Thiago de Oliveira, Cristina Kurachi, Clovis Wesley Oliveira de Souza
      Photodiagnosis and Photodynamic Therapy.2021; 34: 102251.     CrossRef
    • Photodynamic Therapy of Sarcoma M-1 in Rats with Photosensitizer Photoran E6
      O. B. Abramova, V. V. Yuzhakov, M. A. Kaplan, V. V. Drozhzhina, E. A. Beregovskaya, T. P. Churikova, L. E. Sevan’kaeva, N. K. Fomina, M. G. Tsyganova, S. A. Ivanov, A. D. Kaprin
      Bulletin of Experimental Biology and Medicine.2021; 170(4): 479.     CrossRef
    • Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy
      Edith Alejandra Carreño, Anael Viana Pinto Alberto, Cristina Alves Magalhães de Souza, Heber Lopes de Mello, Andrea Henriques-Pons, Luiz Anastacio Alves
      Applied Sciences.2021; 11(6): 2603.     CrossRef
    • Attenuation of Aggregatibacter actinomycetemcomitans virulence using curcumin-decorated nanophytosomes-mediated photo-sonoantimicrobial chemotherapy
      Maryam Pourhajibagher, Abbas Bahador
      Scientific Reports.2021;[Epub]     CrossRef
    • Biofilm Formation on the Surface of (Poly)Ether-Ether-Ketone and In Vitro Antimicrobial Efficacy of Photodynamic Therapy on Peri-Implant Mucositis
      Tzu-Yu Peng, Dan-Jae Lin, Yuichi Mine, Chi-Yang Tasi, Po-Jung Li, Yin-Hwa Shih, Kuo-Chou Chiu, Tong-Hong Wang, Shih-Min Hsia, Tzong-Ming Shieh
      Polymers.2021; 13(6): 940.     CrossRef
    • Strategies for Cancer Treatment Based on Photonic Nanomedicine
      Sueli Aparecida de Oliveira, Roger Borges, Derval dos Santos Rosa, Ana Carolina Santos de Souza, Amedea B. Seabra, Francesco Baino, Juliana Marchi
      Materials.2021; 14(6): 1435.     CrossRef
    • Diagnostik und Therapie aktinischer Keratosen*
      Julia Fromme, Cornelia Mauch
      InFo Hämatologie + Onkologie.2021; 24(4): 41.     CrossRef
    • Light delivery device modelling for homogenous irradiation distribution in photodynamic therapy of non-spherical hollow organs
      Yizhou Tan, Shengkun Sun, Defu Chen, Haixia Qiu, Jing Zeng, Ying Wang, Hongyou Zhao, Ying Gu
      Photodiagnosis and Photodynamic Therapy.2021; 34: 102320.     CrossRef
    • Nanotechnology, a booster for the multitarget drug verteporfin
      A. Greco, G. Garoffolo, E. Chiesa, Federica Riva, R. Dorati, T. Modena, B. Conti, M. Pesce, I. Genta
      Journal of Drug Delivery Science and Technology.2021; 64: 102562.     CrossRef
    • Low‐dose photodynamic therapy effect on closure of scratch wounds of normal and diabetic fibroblast cells: An in vitro study
      Khatereh Khorsandi, Reza Fekrazad, Michael R. Hamblin
      Journal of Biophotonics.2021;[Epub]     CrossRef
    • Photophysical Study and Biological Applications of Synthetic Chalcone-Based Fluorescent Dyes
      Sirilak Wangngae, Kantapat Chansaenpak, Jukkrit Nootem, Utumporn Ngivprom, Sirimongkon Aryamueang, Rung-Yi Lai, Anyanee Kamkaew
      Molecules.2021; 26(10): 2979.     CrossRef
    • Ciprofloxacin enhances phototoxicity of 5-aminolevulinic acid mediated photodynamic treatment for chordoma cell lines
      Hanah Hadice Gull, Cihat Karadag, Brigitte Senger, Rüdiger V. Sorg, Peter Möller, Kevin Mellert, Hans-Jakob Steiger, Daniel Hänggi, Jan Frederick Cornelius
      Photodiagnosis and Photodynamic Therapy.2021; 35: 102346.     CrossRef
    • Comparison of the Photodynamic Action of Porphyrin, Chlorin, and Isobacteriochlorin Derivatives toward a Melanotic Cell Line
      Kelly A.D.F. Castro, Loyanne Ramos, Mariana Mesquita, Juliana Cristina Biazzotto, Nuno M.M. Moura, Ricardo F. Mendes, Filipe A. Almeida Paz, Augusto C. Tomé, José A. S. Cavaleiro, Mário M.Q. Simões, Maria A.F. Faustino, Alessandra Vincenzi Jager, Shirley
      ACS Applied Bio Materials.2021; 4(6): 4925.     CrossRef
    • Photodynamic therapy using silicon phthalocyanine conjugated with bovine serum albumin as a drug delivery system
      E P O Silva, N M Ribeiro, M A G Cardoso, C Pacheco-Soares, M Beltrame Jr
      Laser Physics.2021; 31(7): 075601.     CrossRef
    • Photodynamic Therapy in Orthodontics: A Literature Review
      Marcin Olek, Agnieszka Machorowska-Pieniążek, Wojciech Stós, Janusz Kalukin, Dorota Bartusik-Aebisher, David Aebisher, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka
      Pharmaceutics.2021; 13(5): 720.     CrossRef
    • Radiodynamic Therapy Using TAT Peptide-Targeted Verteporfin-Encapsulated PLGA Nanoparticles
      Sandhya Clement, Ayad Anwer, Layla Pires, Jared Campbell, Brian Wilson, Ewa Goldys
      International Journal of Molecular Sciences.2021; 22(12): 6425.     CrossRef
    • Effect of the Wavelength and Intensity of Excitation Light on the Efficiency of Photogeneration of Singlet Oxygen by Photodithazine in the Presence of Pluronic F127 in Model Processes of Photo-Oxidation
      A. S. Kur’yanova, A. B. Solov’eva, N. N. Glagolev, N. A. Aksenova, P. S. Timashev
      Russian Journal of Physical Chemistry A.2021; 95(6): 1222.     CrossRef
    • Glucose conjugated aza-BODIPY for enhanced photodynamic cancer therapy
      Jongjit Treekoon, Thitima Pewklang, Kantapat Chansaenpak, Jaggaiah N. Gorantla, Salila Pengthaisong, Rung-Yi Lai, James R. Ketudat-Cairns, Anyanee Kamkaew
      Organic & Biomolecular Chemistry.2021; 19(26): 5867.     CrossRef
    • Photoinactivation of Pseudomonas aeruginosa Biofilm by Dicationic Diaryl-Porphyrin
      Viviana Teresa Orlandi, Eleonora Martegani, Fabrizio Bolognese, Nicola Trivellin, Francesco Garzotto, Enrico Caruso
      International Journal of Molecular Sciences.2021; 22(13): 6808.     CrossRef
    • Effects of jasplakinolide on cytotoxicity, cytoskeleton and apoptosis in two different colon cancer cell lines treated with m-THPC-PDT
      Kaizhen Yang, Mengyu Luo, Hongxia Li, Gulinur Abdulrehman, Ling Kang
      Photodiagnosis and Photodynamic Therapy.2021; 35: 102425.     CrossRef
    • GSH-Sensitive Nanoscale Mn3+-Sealed Coordination Particles as Activatable Drug Delivery Systems for Synergistic Photodynamic-Chemo Therapy
      Peng Geng, Nuo Yu, Xiaohan Liu, Mei Wen, Qian Ren, Pu Qiu, Daniel K. Macharia, Haijun Zhang, Maoquan Li, Zhigang Chen
      ACS Applied Materials & Interfaces.2021; 13(27): 31440.     CrossRef
    • Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review
      José Francisco Algorri, Mario Ochoa, Pablo Roldán-Varona, Luís Rodríguez-Cobo, José Miguel López-Higuera
      Cancers.2021; 13(14): 3484.     CrossRef
    • Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword
      Zhonglei He, Qian Xu, Ben Newland, Ruth Foley, Irene Lara-Sáez, James F. Curtin, Wenxin Wang
      Journal of Materials Chemistry B.2021; 9(32): 6326.     CrossRef
    • The photodynamic activities of the gold nanoparticle conjugates of phosphorus(V) and gallium(III) A3 meso-triarylcorroles
      Rodah C. Soy, Balaji Babu, John Mack, Tebello Nyokong
      Dyes and Pigments.2021; 194: 109631.     CrossRef
    • Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearingo-carborane: PDT agents with boron carriers for potential BNCT
      Robert Conway-Kenny, Albert Ferrer-Ugalde, Oriol Careta, Xiaoneng Cui, Jianzhang Zhao, Carme Nogués, Rosario Núñez, Justo Cabrera-González, Sylvia M. Draper
      Biomaterials Science.2021; 9(16): 5691.     CrossRef
    • Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials
      Zhaoguo Han, Xianshuang Tu, Lina Qiao, Yige Sun, Zibo Li, Xilin Sun, Zhanhong Wu
      Journal of Materials Chemistry B.2021; 9(34): 6751.     CrossRef
    • Aptamer-Conjugated Micelles for Targeted Photodynamic Therapy Via Photoinitiated Polymerization-Induced Self-Assembly
      Angie B. Korpusik, Yan Tan, John B. Garrison, Weihong Tan, Brent S. Sumerlin
      Macromolecules.2021; 54(16): 7354.     CrossRef
    • Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status
      Gurcan Gunaydin, M. Emre Gedik, Seylan Ayan
      Frontiers in Chemistry.2021;[Epub]     CrossRef
    • Micro- and Nano-Based Transdermal Delivery Systems of Photosensitizing Drugs for the Treatment of Cutaneous Malignancies
      Isabella Portugal, Sona Jain, Patrícia Severino, Ronny Priefer
      Pharmaceuticals.2021; 14(8): 772.     CrossRef
    • Photodynamic Therapy and Hyperthermia in Combination Treatment—Neglected Forces in the Fight against Cancer
      Aleksandra Bienia, Olga Wiecheć-Cudak, Aleksandra Anna Murzyn, Martyna Krzykawska-Serda
      Pharmaceutics.2021; 13(8): 1147.     CrossRef
    • Effectiveness of antimicrobial photodynamic therapy with indocyanine green against the standard and fluconazole-resistant Candida albicans
      Maryam Mardani, Omid Kamrani
      Lasers in Medical Science.2021; 36(9): 1971.     CrossRef
    • Nano-ablative immunotherapy for cancer treatment
      Ashley R. Hoover, Kaili Liu, Trisha I. Valerio, Min Li, Priyabrata Mukherjee, Wei R. Chen
      Nanophotonics.2021; 10(12): 3247.     CrossRef
    • Photodiagnosis and photodynamic effects of bacteriochlorin-naphthalimide conjugates on tumor cells and mouse model
      Natalia B. Morozova, Marina A. Pavlova, Anna D. Plyutinskaya, Andrey A. Pankratov, Kanamat T. Efendiev, Alevtina S. Semkina, Dmitriy A. Pritmov, Andrey F. Mironov, Pavel A. Panchenko, Olga A. Fedorova
      Journal of Photochemistry and Photobiology B: Biology.2021; 223: 112294.     CrossRef
    • Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions
      José H. Correia, José A. Rodrigues, Sara Pimenta, Tao Dong, Zhaochu Yang
      Pharmaceutics.2021; 13(9): 1332.     CrossRef
    • Photodynamic Therapy: A Compendium of Latest Reviews
      José Francisco Algorri, Mario Ochoa, Pablo Roldán-Varona, Luís Rodríguez-Cobo, José Miguel López-Higuera
      Cancers.2021; 13(17): 4447.     CrossRef
    • Surface tailored zein as a novel delivery system for hypericin: Application in photodynamic therapy
      Ahmed M. Abdelsalam, Ahmed Somaida, Ghazala Ambreen, Abdallah M. Ayoub, Imran Tariq, Konrad Engelhardt, Patrick Garidel, Ibrahim Fawaz, Muhammed U. Amin, Matthias Wojcik, Udo Bakowsky
      Materials Science and Engineering: C.2021; 129: 112420.     CrossRef
    • Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells
      Anine Crous, Heidi Abrahamse
      Royal Society Open Science.2021; 8(9): 210148.     CrossRef
    • Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy
      Letícia B. Silva, Kelly A. D. F. Castro, Caroline E. A. Botteon, Cristiano L. P. Oliveira, Roberto S. da Silva, Priscyla D. Marcato
      Frontiers in Bioengineering and Biotechnology.2021;[Epub]     CrossRef
    • Peptide-conjugated nanoparticles for targeted photodynamic therapy
      Batoul Dhaini, Bibigul Kenzhebayeva, Amina Ben-Mihoub, Mickaël Gries, Samir Acherar, Francis Baros, Noémie Thomas, Joël Daouk, Hervé Schohn, Tayssir Hamieh, Céline Frochot
      Nanophotonics.2021; 10(12): 3089.     CrossRef
    • Antimicrobial photodynamic therapy (aPDT) with curcumin controls intradermal infection by Staphylococcus aureus in mice with type 1 diabetes mellitus: a pilot study
      Igor Pereira Ribeiro Muniz, Maria Poliana Leite Galantini, Israel Souza Ribeiro, Caroline Vieira Gonçalves, Denisar Palmito dos Santos, Tatyana Chagas Moura, Emely Soares Silva, Nathalia Rosa Silva, Barbara Porto Cipriano, Thiago Macêdo Lopes Correia, Tel
      Journal of Photochemistry and Photobiology B: Biology.2021; 224: 112325.     CrossRef
    • Co(II) complexes of curcumin and a ferrocene-based curcuminoid: a study on photo-induced antitumor activity
      Dhananjay Das, Aisha Noor, Md Kausar Raza, Tridib K. Goswami
      JBIC Journal of Biological Inorganic Chemistry.2021; 26(8): 881.     CrossRef
    • MET-targeted NIR II luminescence diagnosis and up-conversion guided photodynamic therapy for triple-negative breast cancer based on a lanthanide nanoprobe
      Yanxing Wang, Miao Feng, Bi Lin, Xiangrong Peng, Zhan Wang, Ruichan Lv
      Nanoscale.2021; 13(43): 18125.     CrossRef
    • The Clinical Case of Successful Application of Photodynamic Therapy in the Skin Metastases Treatment of Breast Cancer
      Nasrulla Shanazarov, Sergei Zinchenko, Erbol Zhapparov, Niyaz Muratov, Dinara Turzhanova, Airat Bilyalov, Tahir Tashpulatov
      BioNanoScience.2021; 11(4): 957.     CrossRef
    • Functional intersections between extracellular vesicles and oncolytic therapies
      Ryan A. Clark, Zoe G. Garman, Richard J. Price, Natasha D. Sheybani
      Trends in Pharmacological Sciences.2021; 42(11): 883.     CrossRef
    • RBC-derived nanosystem with enhanced ferroptosis triggered by oxygen-boosted phototherapy for synergized tumor treatment
      Wenjun Liu, Jieyuan Zhang, Liang Ding, Weifeng Ni, Junjie Yuan, Haijun Xiao, Jingwei Zhang
      Biomaterials Science.2021; 9(21): 7228.     CrossRef
    • Organic light emitting diode for in vitro antimicrobial photodynamic therapy of Candida strains
      Uriel Melendez-Celis, Teresita Spezzia-Mazzocco, Saydulla Persheyev, Cheng Lian, Ifor Samuel, Julio C. Ramirez-San-Juan, Ruben Ramos-Garcia
      Photodiagnosis and Photodynamic Therapy.2021; 36: 102567.     CrossRef
    • Photodynamic Therapy Induced Cell Death Mechanisms in Breast Cancer
      Dimakatso R. Mokoena, Blassan P. George, Heidi Abrahamse
      International Journal of Molecular Sciences.2021; 22(19): 10506.     CrossRef
    • Facile Synthesis of ZnPc‐Polydopamine Co‐loaded Nanoparticles for Synergetic Photodynamic‐Photothermal Therapy
      Jinglei Qin, Lanying Guo, Tingyu Yang, Xi Wu, Zhi Wang, Fang Xie, Hongshang Peng
      ChemNanoMat.2021; 7(12): 1322.     CrossRef
    • Recent advances in assembled AIEgens for image-guided anticancer therapy
      Xue Ren, Song Zhang, Leijing Liu, Bin Xu, Wenjing Tian
      Nanotechnology.2021; 32(50): 502008.     CrossRef
    • A mitochondrial-targeting iridium(iii) complex for H2O2-responsive and oxidative stress amplified two-photon photodynamic therapy
      Xinxing Liao, Jinchao Shen, Weijun Wu, Shi Kuang, Mingwei Lin, Johannes Karges, Zilong Tang, Hui Chao
      Inorganic Chemistry Frontiers.2021; 8(23): 5045.     CrossRef
    • Photoinduced 6π-Electrocyclization of a 1,3,5-Hexatriene System Containing an Allomaltol Fragment
      Andrey N. Komogortsev, Boris V. Lichitsky, Valeriya G. Melekhina, Darina I. Nasyrova, Constantine V. Milyutin
      The Journal of Organic Chemistry.2021; 86(21): 15345.     CrossRef
    • Targeting glioblastoma stem cells: The first step of photodynamic therapy
      Lechner Rodríguez Aguilar, María Laura Vilchez, Laura N. Milla Sanabria
      Photodiagnosis and Photodynamic Therapy.2021; 36: 102585.     CrossRef
    • Photodynamic therapy of the experimental tumors of different morphological types with liposomal boronated chlorin е6
      O. B. Abramova, V. V. Drozhzhina, T. P. Churikova, E. A. Kozlovtceva, L. M. Arkhipova, M. A. Kaplan, S. A. Ivanov, A. D. Kaprin
      Biomedical Photonics.2021; 10(3): 12.     CrossRef
    • Copper (II) complexes modified with water-soluble porphyrin and various small molecules ligand for DNA binding and potential selectivity antitumor agents
      Qian Zhang, Qiang Zhang, Zhen-zhen Li, Hua Liu, Jia-cheng Liu
      Dyes and Pigments.2020; 173: 107923.     CrossRef
    • Effect of photodynamic therapy on gingival inflammation in patients with thalassemia
      Dhafer Al Asmari, Muhammad Khalil Khan
      Photodiagnosis and Photodynamic Therapy.2020; 29: 101595.     CrossRef
    • Clinical efficacy of photodynamic therapy in the treatment of necrotizing ulcerative periodontitis among HIV seropositive patients: A randomized controlled clinical trial
      Fayez Hussain Niazi, Pradeep Koppolu, Syed Bilal Tanvir, Abdulaziz Samran, Ali Alqerban
      Photodiagnosis and Photodynamic Therapy.2020; 29: 101608.     CrossRef
    • Light Irradiation of Gold Nanoparticles Toward Advanced Cancer Therapeutics
      Ana Amendoeira, Lorenzo Rivas García, Alexandra R. Fernandes, Pedro V. Baptista
      Advanced Therapeutics.2020;[Epub]     CrossRef
    • Reactive Oxygen Species Explicit Dosimetry for Photofrin‐mediated Pleural Photodynamic Therapy
      Yi Hong Ong, Andreaa Dimofte, Michele M. Kim, Jarod C. Finlay, Tianqi Sheng, Sunil Singhal, Keith A. Cengel, Arjun G. Yodh, Theresa M. Busch, Timothy C. Zhu
      Photochemistry and Photobiology.2020; 96(2): 340.     CrossRef
    • DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units
      Halise Yalazan, Burak Barut, Beytullah Ertem, Can Özgür Yalçın, Yasemin Ünver, Arzu Özel, İpek Ömeroğlu, Mahmut Durmuş, Halit Kantekin
      Polyhedron.2020; 177: 114319.     CrossRef
    • Development of thermosensitive hydrogel containing methylene blue for topical antimicrobial photodynamic therapy
      Brian Leung, Priyanga Dharmaratne, Wei Yan, Ben C.L. Chan, Clara B.S. Lau, Kwok-Pui Fung, Margaret Ip, Sharon S.Y. Leung
      Journal of Photochemistry and Photobiology B: Biology.2020; 203: 111776.     CrossRef
    • Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy
      Yilin Zheng, Ziying Li, Haijun Chen, Yu Gao
      European Journal of Pharmaceutical Sciences.2020; 144: 105213.     CrossRef
    • Does photodynamic therapy with methylene blue affect the mechanical properties and bond strength of glass-fiber posts in different thirds of intraradicular dentin?
      Henrico Badaoui Strazzi-Sahyon, Murilo Silva de Oliveira, Paloma Pereira da Silva, Henrique Augusto Banci, Fernanda Santos de Melo, Carolina Martins Teixeira Martinez, Luciano Tavares Angelo Cintra, João Eduardo Gomes-Filho, Eloi Dezan-Júnior, Paulo Henri
      Photodiagnosis and Photodynamic Therapy.2020; 30: 101673.     CrossRef
    • Topical 5-aminolevulinic acid-mediated photodynamic therapy for basal cell carcinoma
      E. Filonenko, A. Kaprin, A. Urlova, N. Grigorievykh, V. Ivanova-Radkevich
      Photodiagnosis and Photodynamic Therapy.2020; 30: 101644.     CrossRef
    • The Application of DVDMS as a Sensitizing Agent for Sono-/Photo-Therapy
      Bingjie Mai, Xiaobing Wang, Quanhong Liu, Kun Zhang, Pan Wang
      Frontiers in Pharmacology.2020;[Epub]     CrossRef
    • Photodynamic Therapy and the Biophysics of the Tumor Microenvironment
      Aaron J. Sorrin, Mustafa Kemal Ruhi, Nathaniel A. Ferlic, Vida Karimnia, William J. Polacheck, Jonathan P. Celli, Huang‐Chiao Huang, Imran Rizvi
      Photochemistry and Photobiology.2020; 96(2): 232.     CrossRef
    • Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy
      Chen Liang, Xinglin Zhang, Zhichao Wang, Wenjun Wang, Mengsu Yang, Xiaochen Dong
      Journal of Materials Chemistry B.2020; 8(22): 4748.     CrossRef
    • Antibacterial Surfaces with Activity against Antimicrobial Resistant Bacterial Pathogens and Endospores
      Sandeep K. Sehmi, Claudio Lourenco, Khaled Alkhuder, Sebastian D. Pike, Sacha Noimark, Charlotte K. Williams, Milo S. P. Shaffer, Ivan P. Parkin, Alexander J. MacRobert, Elaine Allan
      ACS Infectious Diseases.2020; 6(5): 939.     CrossRef
    • Application of nanotechnology for enhancing photodynamic therapy via ameliorating, neglecting, or exploiting tumor hypoxia
      DanRong Hu, Meng Pan, Yan Yu, Ao Sun, Kun Shi, Ying Qu, ZhiYong Qian
      VIEW.2020;[Epub]     CrossRef
    • Naftifine enhances photodynamic therapy against Staphylococcus aureus by inhibiting staphyloxanthin expression
      Jing Sun, Yuxiang Zhang, Jianqiang Su, Tao Dai, Jincan Chen, Lei Zhang, Huanhuan Wang, Wenzhen Liu, Mingdong Huang, Zhuo Chen
      Dyes and Pigments.2020; 179: 108392.     CrossRef
    • Hypericin Delivery System Based on P84 Copolymeric Micelles Linked with N-(3-Aminopropyl)-2-pyrrolidone for Melanoma-Targeted Photodynamic Therapy
      R. S. Gonçalves, G. Braga, A. C. V. de Oliveira, G. B. César, T. T. Tominaga, E. H. Zampiere, I. R. Calori, F. A. P. de Morais, E. A. Basso, R. M. Pontes, N. Hioka, W. Caetano
      ACS Applied Polymer Materials.2020; 2(4): 1692.     CrossRef
    • Infrared navigation system for light dosimetry during pleural photodynamic therapy
      Michele M Kim, Timothy C Zhu, Yi Hong Ong, Jarod C Finlay, Andreea Dimofte, Sunil Singhal, Eli Glatstein, Keith A Cengel
      Physics in Medicine & Biology.2020; 65(7): 075006.     CrossRef
    • Tight junction modulation at the blood-brain barrier: Current and future perspectives
      Yosuke Hashimoto, Matthew Campbell
      Biochimica et Biophysica Acta (BBA) - Biomembranes.2020; 1862(9): 183298.     CrossRef
    • Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy
      Xiao-fang Zhong, Xun Sun
      Acta Pharmacologica Sinica.2020; 41(7): 928.     CrossRef
    • Photodynamic treatment induced membrane cell damage in Acanthamoeba castellanii Neff
      Fernanda Vázquez-Ortega, Ines Sifaoui, María Reyes-Batlle, José E. Piñero, Irene Lagunes, Ángel Trigos, Jacob Lorenzo-Morales, Ana R. Díaz-Marrero, José J. Fernández
      Dyes and Pigments.2020; 180: 108481.     CrossRef
    • Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications
      Barbara Pucelik, Adam Sułek, Janusz M. Dąbrowski
      Coordination Chemistry Reviews.2020; 416: 213340.     CrossRef
    • Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review
      Priyanga Dharmaratne, Dulmini Nanayakkara Sapugahawatte, Baiyan Wang, Chung Lap Chan, Kit-Man Lau, Clara BS Lau, Kwok Pui Fung, Dennis KP. Ng, Margaret IP
      European Journal of Medicinal Chemistry.2020; 200: 112341.     CrossRef
    • In-vitro investigation of cold atmospheric plasma induced photodynamic effect by Indocyanine green and Protoporphyrin IX
      Atefeh Vejdani Noghreiyan, Armin Imanparast, Elham Shayesteh Ara, Samaneh Soudmand, Vajiheh Vejdani Noghreiyan, Ameneh Sazgarnia
      Photodiagnosis and Photodynamic Therapy.2020; 31: 101822.     CrossRef
    • Investigation into the influence of an acrylic acid acceptor in organic D-π-A sensitizers against phototoxicity
      Shinichiro Fuse, Wataru Moriya, Shinichi Sato, Hiroyuki Nakamura
      Bioorganic & Medicinal Chemistry.2020; 28(13): 115558.     CrossRef
    • Single-atom replacement as a general approach towards visible-light/near-infrared heavy-atom-free photosensitizers for photodynamic therapy
      Juan Tang, Lushun Wang, Axel Loredo, Carson Cole, Han Xiao
      Chemical Science.2020; 11(26): 6701.     CrossRef
    • Familiarity and implementation of academicians of dental schools regarding the application of photodynamic therapy in dentistry: A need to incorporate in the dental curriculum
      Mai Soliman, Elzahraa Eldwakhly, Alhanoof Aldegheishem, Ahmed Binobaid, Selma Saadaldin
      Photodiagnosis and Photodynamic Therapy.2020; 31: 101897.     CrossRef
    • Blood Flow Measurements Enable Optimization of Light Delivery for Personalized Photodynamic Therapy
      Yi Hong Ong, Joann Miller, Min Yuan, Malavika Chandra, Mirna El Khatib, Sergei A. Vinogradov, Mary E. Putt, Timothy C. Zhu, Keith A. Cengel, Arjun G. Yodh, Theresa M. Busch
      Cancers.2020; 12(6): 1584.     CrossRef
    • Quinoline- and Benzoselenazole-Derived Unsymmetrical Squaraine Cyanine Dyes: Design, Synthesis, Photophysicochemical Features and Light-Triggerable Antiproliferative Effects against Breast Cancer Cell Lines
      Eurico Lima, Renato E. Boto, Diana Ferreira, José R. Fernandes, Paulo Almeida, Luis F. V. Ferreira, Eliana B. Souto, Amélia M. Silva, Lucinda V. Reis
      Materials.2020; 13(11): 2646.     CrossRef
    • In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer
      Krzysztof Sztandera, Monika Marcinkowska, Michał Gorzkiewicz, Anna Janaszewska, Regis Laurent, Maria Zabłocka, Serge Mignani, Jean Pierre Majoral, Barbara Klajnert-Maculewicz
      International Journal of Molecular Sciences.2020; 21(12): 4456.     CrossRef
    • Nanotechnology in Modern Photodynamic Therapy of Cancer: A Review of Cellular Resistance Patterns Affecting the Therapeutic Response
      Elvin Peter Chizenga, Heidi Abrahamse
      Pharmaceutics.2020; 12(7): 632.     CrossRef
    • Pheophorbide a-mediated sonodynamic, photodynamic and sonophotodynamic therapies against prostate cancer
      Mehran Aksel, Ozlem Bozkurt-Girit, Mehmet Dincer Bilgin
      Photodiagnosis and Photodynamic Therapy.2020; 31: 101909.     CrossRef
    • In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography
      Defu Chen, Wu Yuan, Hyeon-Cheol Park, Xingde Li
      Biomedical Optics Express.2020; 11(8): 4316.     CrossRef
    • Indocyanine Green Nanoparticles: Are They Compelling for Cancer Treatment?
      Marta Sevieri, Filippo Silva, Arianna Bonizzi, Leopoldo Sitia, Marta Truffi, Serena Mazzucchelli, Fabio Corsi
      Frontiers in Chemistry.2020;[Epub]     CrossRef
    • Conjugates of 3,4-dimethoxy-4-styrylnaphthalimide and bacteriochlorin for theranostics in photodynamic therapy
      M. A. Zakharko, P. A. Panchenko, D. P. Zarezin, V. G. Nenajdenko, D. A. Pritmov, M. A. Grin, A. F. Mironov, O. A. Fedorova
      Russian Chemical Bulletin.2020; 69(6): 1169.     CrossRef
    • Effect of antimicrobial photodynamic therapy with Radachlorin and a 660 nm diode laser on Pseudomonas aeruginosa: An in vitro study
      Ji-won Kim, Hyun-Soo Lim
      Photodiagnosis and Photodynamic Therapy.2020; 31: 101931.     CrossRef
    • Amphiphilic tumor-targeting chimeric peptide-based drug self-delivery nanomicelles for overcoming drug resistance in cancer by synergistic chemo-photodynamic therapy
      Pei-Ling Chen, Shi-Li Peng, Li-Ting Wu, Ming-Ming Fan, Ping Wang, Li-Han Liu
      Journal of Materials Science.2020; 55(31): 15288.     CrossRef
    • Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms
      Abdulrahman A. Balhaddad, Isadora M. Garcia, Maria Salem Ibrahim, Juliana P.M.L. Rolim, Edison A.B. Gomes, Frederico C. Martinho, Fabricio M. Collares, Hockin Xu, Mary Anne S. Melo
      Photobiomodulation, Photomedicine, and Laser Surgery.2020; 38(8): 481.     CrossRef
    • Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics
      Wei Yang, Qinghua Lyu, Jun Zhao, Liqi Cao, Yi Hao, Han Zhang
      Science China Materials.2020; 63(12): 2397.     CrossRef
    • Sequential Treatment of Superficial Basal Cell Carcinomas With Topical Methyl Aminolevulinate Photodynamic Therapy and Imiquimod 5% Cream: A Retrospective Study of Clinical and Cosmetic Outcomes
      Ian T. Logan, Elizabeth L. Kulakov, Conal M. Perrett
      Dermatologic Surgery.2020; 46(10): 1272.     CrossRef
    • Aktinische Keratosen
      Julia Fromme, Cornelia Mauch
      CME.2020; 17(10): 9.     CrossRef
    • Immunoactive photosensitizers had photodynamic immunostimulatory and immunomodulatory effects on mammalian macrophages
      Furkan Ayaz, Burcu Demirbag, Kasim Ocakoglu
      Photodiagnosis and Photodynamic Therapy.2020; 32: 102034.     CrossRef
    • Light Energy Dose and Photosensitizer Concentration Are Determinants of Effective Photo-Killing against Caries-Related Biofilms
      Abdulrahman A. Balhaddad, Mohammed S. AlQranei, Maria S. Ibrahim, Michael D. Weir, Frederico C. Martinho, Hockin H. K. Xu, Mary Anne S. Melo
      International Journal of Molecular Sciences.2020; 21(20): 7612.     CrossRef
    • Nanoconjugates of graphene oxide derivatives and meso-tetraphenylporphyrin: a new avenue for anticancer photodynamic therapies – Cell-on-a-Chip analysis
      A. Zuchowska, A. Kasprzak, B. Dabrowski, K. Kaminska, M. Poplawska, Z. Brzozka
      New Journal of Chemistry.2020; 44(43): 18770.     CrossRef
    • Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review
      Antony V. Samrot, Tan Chuan Sean, Teeshalini Kudaiyappan, Ummu Bisyarah, Anita Mirarmandi, Etel Faradjeva, Amira Abubakar, Hawwa Hashma Ali, J. Lavanya Agnes Angalene, S. Suresh Kumar
      International Journal of Biological Macromolecules.2020; 165: 3088.     CrossRef
    • Influence of root debridement with adjunct photodynamic therapy on periodontal parameters and gingival crevicular fluid cortisol levels among patients with and without type-2 diabetes mellitus
      Abeer S. Al-Zawawi, Ishfaq A. Bukhari, Fernanda O. Bello-Correa, Saeed A. Sheikh, Refal Albaijan, Fahim Vohra
      Photodiagnosis and Photodynamic Therapy.2020; 32: 102076.     CrossRef
    • Controllable Assembly of Upconversion Nanoparticles Enhanced Tumor Cell Penetration and Killing Efficiency
      Zhen Zhang, Juwita Norasmara Rahmat, Ratha Mahendran, Yong Zhang
      Advanced Science.2020;[Epub]     CrossRef
    • Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo
      Nokuphila Winifred Nompumelelo Simelane, Cherie Ann Kruger, Heidi Abrahamse
      RSC Advances.2020; 10(68): 41560.     CrossRef
    • New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods
      Dmitry V. Yakovlev, Dina S. Farrakhova, Artem A. Shiryaev, Kanamat T. Efendiev, Maxim V. Loschenov, Liana M. Amirkhanova, Dmitry O. Kornev, Vladimir V. Levkin, Igor V. Reshetov, Victor B. Loschenov
      Frontiers of Optoelectronics.2020; 13(4): 352.     CrossRef
    • Elucidation of intracellular uptake and degradation mechanism of photosensitizer talaporfin
      Takuma Saito, Tomohide Tsukahara, Terufumi Kubo, Takayuki Kanaseki, Yoshihiko Hirohashi, Toshihiko Torigoe, Liming Li
      Molecular Crystals and Liquid Crystals.2020; 707(1): 81.     CrossRef
    • Advancement in Nanotheranostics for Effective Skin Cancer Therapy: State of the Art
      Md. Habban Akhter, Mohamed Jawed Ahsan, Mahfoozur Rahman, Siraj Anwar, Md. Rizwanullah
      Current Nanomedicine.2020; 10(2): 90.     CrossRef
    • Photodynamic therapy in the treatment of patients with vulvar premalignant diseases. First experience of its use in Ukraine
      В. В. Дунаевская, Т. Ф. Татарчук, Н. Ф. Захаренко, Д. А. Церковский, В. С. Сольский
      REPRODUCTIVE ENDOCRINOLOGY.2020; (54): 22.     CrossRef
    • Evaluation of temperature changes in a cell culture plate well with absorbing walls containing a 3D model of tumour spheroid under irradiation in the optical range
      N.V. Sapogova, D.V. Yuzhakova, A.A. Smirnov, M.V. Shirmanova, M.M. Lukina, A.I. Gavrina, A.V. Izosimova, E.V. Zagaynova, V.A. Kamensky
      Quantum Electronics.2020; 50(11): 1050.     CrossRef
    • Upconversion-based photodynamic cancer therapy
      Yanyan Liu, Xianfu Meng, Wenbo Bu
      Coordination Chemistry Reviews.2019; 379: 82.     CrossRef
    • Vitamin-E/lipid based PEGylated polymeric micellar doxorubicin to sensitize doxorubicin-resistant cells towards treatment
      Omkara Swami Muddineti, Sri Vishnu Kiran Rompicharla, Preeti Kumari, Himanshu Bhatt, Balaram Ghosh, Swati Biswas
      Reactive and Functional Polymers.2019; 134: 49.     CrossRef
    • Elucidating the mode of action for thiophene-based organic D-π-A sensitizers for use in photodynamic therapy
      Shinichiro Fuse, Miori Takizawa, Shinichi Sato, Shigetoshi Okazaki, Hiroyuki Nakamura
      Bioorganic & Medicinal Chemistry.2019; 27(2): 315.     CrossRef
    • Effect of the Photodynamic Therapy Applications with Potent Microalgae Constituents on Several Types of Tumor
      A. Jabeen, B. Reeder, D. Svistunenko, S. Hisaindee, S. Ashraf, S. Al-Zuhair, S. Battah
      IRBM.2019; 40(1): 51.     CrossRef
    • Synthesis and evolution of S-Porphin sodium as a potential antitumor agent for photodynamic therapy against breast cancer
      Xiao Wang, Li Li, Kun Zhang, Zhen Han, Zhijian Ding, Mingwei Lv, Pan Wang, Quanhong Liu, Xiaobing Wang
      Organic Chemistry Frontiers.2019; 6(3): 362.     CrossRef
    • Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery
      Pieterjan Debie, Nick Devoogdt, Sophie Hernot
      Antibodies.2019; 8(1): 12.     CrossRef
    • Porphyrinoids in photodynamic diagnosis and therapy of oral diseases
      Arleta Glowacka-Sobotta, Maciej Wrotynski, Michal Kryjewski, Lukasz Sobotta, Jadwiga Mielcarek
      Journal of Porphyrins and Phthalocyanines.2019; 23(01n02): 1.     CrossRef
    • Photodynamic Activity of Vitamin-Chlorin Conjugates at Nanomolar Concentrations against Triple-Negative Breast Cancer Cells
      Meden F. Isaac-Lam, Alexandra D. Mee
      ACS Omega.2019; 4(2): 2907.     CrossRef
    • Effectiveness of ZnPc and of an amine derivative to inactivate Glioblastoma cells by Photodynamic Therapy: an in vitro comparative study
      Fabiola N. Velazquez, Mariana Miretti, Maria T. Baumgartner, Beatriz L. Caputto, Tomas C. Tempesti, César G. Prucca
      Scientific Reports.2019;[Epub]     CrossRef
    • Exfoliated Black Phosphorus Promotes in Vitro Bone Regeneration and Suppresses Osteosarcoma Progression through Cancer-Related Inflammation Inhibition
      Maria Grazia Raucci, Ines Fasolino, Maria Caporali, Manuel Serrano-Ruiz, Alessandra Soriente, Maurizio Peruzzini, Luigi Ambrosio
      ACS Applied Materials & Interfaces.2019; 11(9): 9333.     CrossRef
    • Topical and intradermal delivery of PpIX precursors for photodynamic therapy with intense pulsed light on porcine skin model
      Michelle Barreto Requena, José Dirceu Vollet Filho, Andrigo Barboza de Nardi, Andre Escobar, Rozana da Rocha Adams, Vanderlei Salvador Bagnato, Priscila Fernanda Campos de Menezes
      Lasers in Medical Science.2019; 34(9): 1781.     CrossRef
    • Accurate early prediction of tumour response to PDT using optical coherence angiography
      M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, A. Vitkin
      Scientific Reports.2019;[Epub]     CrossRef
    • Photodynamic Antimicrobial Chemotherapy (PACT) using methylene blue inhibits the viability of the biofilm produced by Candida albicans
      Leonardo de Carvalho Leonel, Moisés Lopes Carvalho, Bruna Marques da Silva, Stella Zamuner, Carlos Alberto-Silva, Maricilia Silva Costa
      Photodiagnosis and Photodynamic Therapy.2019; 26: 316.     CrossRef
    • Effects of palmatine hydrochloride mediated photodynamic therapy on oral squamous cell carcinoma
      Feng Qi, Yi Sun, Moyang Lv, Feng Qin, Wenwu Cao, Liangjia Bi
      Photochemical & Photobiological Sciences.2019; 18(6): 1596.     CrossRef
    • mTOR Signaling Pathway in Cancer Targets Photodynamic Therapy In Vitro
      Sandra M. Ayuk, Heidi Abrahamse
      Cells.2019; 8(5): 431.     CrossRef
    • Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies
      Ilya Yakavets, Marie Millard, Vladimir Zorin, Henri-Pierre Lassalle, Lina Bezdetnaya
      Journal of Controlled Release.2019; 304: 268.     CrossRef
    • Upconversion nano-particles from synthesis to cancer treatment: A review
      Mahshid Jafari, Alireza Rezvanpour
      Advanced Powder Technology.2019; 30(9): 1731.     CrossRef
    • Comparison of the efficacy of indocyanine green-mediated photodynamic therapy and nystatin therapy in treatment of denture stomatitis
      Bahar Afroozi, Kamiar Zomorodian, Fatemeh Lavaee, Zahra Zare Shahrabadi, Maryam Mardani
      Photodiagnosis and Photodynamic Therapy.2019; 27: 193.     CrossRef
    • Effect of methylene blue photodynamic therapy on human neutrophil functional responses
      Elisa Trevisan, Renzo Menegazzi, Giuliano Zabucchi, Barbara Troian, Stefano Prato, Francesca Vita, Valentina Rapozzi, Micaela Grandolfo, Violetta Borelli
      Journal of Photochemistry and Photobiology B: Biology.2019; 199: 111605.     CrossRef
    • Photodynamic therapy for the treatment of oral squamous carcinoma—Clinical implications resulting from in vitro research
      Marcin Olek, Jacek Kasperski, Dariusz Skaba, Rafał Wiench, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka
      Photodiagnosis and Photodynamic Therapy.2019; 27: 255.     CrossRef
    • Gelatin nanoparticles loaded methylene blue as a candidate for photodynamic antimicrobial chemotherapy applications in Candida albicans growth
      Jéssica Aparecida Ribeiro Ambrosio, Bruna Cristina dos Santos Pinto, Daniele da Silva Godoy, Janicy Arantes Carvalho, Alexandro da Silva Abreu, Bruna Graziele Marques da Silva, Leonardo de Carvalho Leonel, Maricilia Silva Costa, Milton Beltrame Junior, An
      Journal of Biomaterials Science, Polymer Edition.2019; 30(14): 1356.     CrossRef
    • Nanoparticles-based photosensitizers with effect of aggregation-induced emission
      O. V. Korneev, T. V. Sakhno, I. V. Korotkova
      Biopolymers and Cell.2019; 35(4): 249.     CrossRef
    • Application of Porphyrins in Antibacterial Photodynamic Therapy
      Bamidele Amos-Tautua, Sandile Songca, Oluwatobi Oluwafemi
      Molecules.2019; 24(13): 2456.     CrossRef
    • In vitro and in vivo effects of HAL on porphyrin production in rat bladder cancer cells (AY27)
      Odrun A. Gederaas, Harald Husebye, Anders Johnsson, Susan Callaghan, Anders Brunsvik
      Journal of Porphyrins and Phthalocyanines.2019; 23(07n08): 813.     CrossRef
    • Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review
      Giovana Maria Fioramonti Calixto, Sarah Raquel de Annunzio, Francesca Damiani Victorelli, Maria Lucia Frade, Paula Scanavez Ferreira, Marlus Chorilli, Carla Raquel Fontana
      AAPS PharmSciTech.2019;[Epub]     CrossRef
    • Effect of Photodynamic Therapy on Microorganisms Responsible for Dental Caries: A Systematic Review and Meta-Analysis
      Analú Barros de Oliveira, Túlio Morandin Ferrisse, Raquel Souza Marques, Sarah Raquel de Annunzio, Fernanda Lourenção Brighenti, Carla Raquel Fontana
      International Journal of Molecular Sciences.2019; 20(14): 3585.     CrossRef
    • Photodynamic therapy by lysosomal-targeted drug delivery using talaporfin sodium incorporated into inactivated virus particles
      Sharmin Akter, Mizuho Inai, Sachiko Saito, Norihiro Honda, Hisanao Hazama, Tomoyuki Nishikawa, Yasufumi Kaneda, Kunio Awazu
      LASER THERAPY.2019; 28(4): 245.     CrossRef
    • Tailored porphyrin–gold nanoparticles for biomedical applications
      Madalina E. Grigore, Rodica-M. Ion, Lorena Iancu, Ramona M. Grigorescu
      Journal of Porphyrins and Phthalocyanines.2019; 23(07n08): 766.     CrossRef
    • A Dual Killing Strategy: Photocatalytic Generation of Singlet Oxygen with Concomitant PtIV Prodrug Activation
      Daniel J. Norman, Alessia Gambardella, Andrew R. Mount, Alan F. Murray, Mark Bradley
      Angewandte Chemie.2019; 131(40): 14327.     CrossRef
    • A Dual Killing Strategy: Photocatalytic Generation of Singlet Oxygen with Concomitant PtIV Prodrug Activation
      Daniel J. Norman, Alessia Gambardella, Andrew R. Mount, Alan F. Murray, Mark Bradley
      Angewandte Chemie International Edition.2019; 58(40): 14189.     CrossRef
    • Synthesis, photophysical and photobiological characterization of BSA nanoparticles loaded with chloroaluminium phthalocyanine by one-step desolvation technique for photodynamic therapy action
      Alexandro da Silva Abreu, Janicy Arantes Carvalho, Agnes Cecheto Trindade, Milton Beltrame Junior, Andreza Ribeiro Simioni
      Journal of Biomaterials Science, Polymer Edition.2019; 30(16): 1559.     CrossRef
    • Photodynamic and peptide-based strategy to inhibit Gram-positive bacterial biofilm formation
      Laura Marise de Freitas, Esteban Nicolás Lorenzón, Eduardo Maffud Cilli, Kleber Thiago de Oliveira, Carla Raquel Fontana, Thomas S. Mang
      Biofouling.2019; 35(7): 742.     CrossRef
    • Pro-Oxidant Drug-Loaded Au/ZnO Hybrid Nanoparticles for Cancer-Specific Chemo-Photodynamic Combination Therapy
      Eun Ji Hong, Padmanaban Sivakumar, Vasanthan Ravichandran, Dae Gun Choi, Yoon-Seok Kim, Min Suk Shim
      ACS Biomaterials Science & Engineering.2019; 5(10): 5209.     CrossRef
    • Immunomodulatory activities of zinc(II)phthalocyanine on the mammalian macrophages through p38 pathway: Potential ex vivo immunomodulatory PDT reagents
      Abdulcelil Yüzer, Furkan Ayaz, Mine Ince
      Bioorganic Chemistry.2019; 92: 103249.     CrossRef
    • Hydrogels for targeted waveguiding and light diffusion
      Sonja Johannsmeier, Maria L. Torres-Mapa, Daniele Dipresa, Tammo Ripken, Dag Heinemann, Alexander Heisterkamp
      Optical Materials Express.2019; 9(10): 3925.     CrossRef
    • Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy
      Wooram Um, Jooho Park, Hokyung Ko, Seungho Lim, Hong Yeol Yoon, Man Kyu Shim, Sangmin Lee, Young Ji Ko, Min Ju Kim, Jae Hyung Park, Dong-Kwon Lim, Youngro Byun, Ick Chan Kwon, Kwangmeyung Kim
      Biomaterials.2019; 224: 119494.     CrossRef
    • Skin and subcutaneous fat morphology alterations under the LED or laser treatment in rats in vivo
      Irina Y. Yanina, Nikita A. Navolokin, Alla B. Bucharskaya, Galina N. Мaslyakova, Valery V. Tuchin
      Journal of Biophotonics.2019;[Epub]     CrossRef
    • Photodynamic Therapy of Psoriasis Using Photosensitizers of Vegetable Origin
      Marcos L. Bruschi, Jéssica Bassi da Silva, Hélen C. Rosseto
      Current Pharmaceutical Design.2019; 25(20): 2279.     CrossRef
    • Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines
      Zoran M. Marković, Svetlana P. Jovanović, Pavle Z. Mašković, Marija M. Mojsin, Milena J. Stevanović, Martin Danko, Matej Mičušík, Dragana J. Jovanović, Angela Kleinová, Zdeno Špitalský, Vladimir B. Pavlović, Biljana M. Todorović Marković
      Journal of Photochemistry and Photobiology B: Biology.2019; 200: 111647.     CrossRef
    • Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy
      Luca Mascheroni, Maria Vittoria Dozzi, Elisabetta Ranucci, Paolo Ferruti, Valentina Francia, Anna Salvati, Daniela Maggioni
      Inorganic Chemistry.2019; 58(21): 14586.     CrossRef
    • Successful Treatment of Adult-Onset Recurrent Respiratory Papillomatosis with CO2 Laser and Photodynamic Therapy
      Sheng Lu, Yang Liu, Runjie Shi, Pingyu Zhou
      Case Reports in Otolaryngology.2019; 2019: 1.     CrossRef
    • Non-distorted visible light-absorbing thiol-PEGylated gold-coated superparamagnetic iron oxide nanoparticles–porphyrin conjugates and their inhibitory effects against nosocomial pathogens
      Bamidele M. Amos-Tautua, Olayemi J. Fakayode, Sandy van Vuuren, Sandile P. Songca, Oluwatobi S. Oluwafemi
      MRS Communications.2019; 9(4): 1335.     CrossRef
    • Application of photodynamic therapy drugs for management of glioma
      Sunil K. Dubey, Sai K. Pradyuth, Ranendra N. Saha, Gautam Singhvi, Amit Alexander, Mukta Agrawal, Bruce A. Shapiro, Anu Puri
      Journal of Porphyrins and Phthalocyanines.2019; 23(11n12): 1216.     CrossRef
    • Screening of X-ray responsive substances for the next generation of radiosensitizers
      Akihiro Moriyama, Takema Hasegawa, Lei Jiang, Hitoshi Iwahashi, Takashi Mori, Junko Takahashi
      Scientific Reports.2019;[Epub]     CrossRef
    • Experience in applying new methodological approach to photodynamic therapy in cosmetology
      N. V. Bochkova, L. S. Kholupova, D. O. Yurchenko
      Medical alphabet.2019; 2(26): 25.     CrossRef
    • Comparative analysis of single- and dual-wavelength photodynamic therapy regimes with chlorin-based photosensitizers: animal study
      Daria Kurakina, Aleksandr Khilov, Maria Shakhova, Natalia Orlinskaya, Ekaterina Sergeeva, Alina Meller, Ilya Turchin, Mikhail Kirillin
      Journal of Biomedical Optics.2019; 25(06): 1.     CrossRef
    • Efficacy of ruthenium coordination complex–based Rutherrin in a preclinical rat glioblastoma model
      Manjunatha Akathatti Munegowda, Carl Fisher, Daniel Molehuis, Warren Foltz, Mark Roufaiel, Jay Bassan, Mark Nitz, Arkady Mandel, Lothar Lilge
      Neuro-Oncology Advances.2019;[Epub]     CrossRef
    • Biofilm formation by Candida albicans is inhibited by photodynamic antimicrobial chemotherapy (PACT), using chlorin e6: increase in both ROS production and membrane permeability
      Moisés Lopes Carvalho, Ana Paula Pinto, Leandro José Raniero, Maricilia Silva Costa
      Lasers in Medical Science.2018; 33(3): 647.     CrossRef
    • Inhibitory effect of aloe emodin mediated photodynamic therapy on human oral mucosa carcinoma in vitro and in vivo
      Yun-qing Liu, Pei-song Meng, Hong-chao Zhang, Xu Liu, Meng-xi Wang, Wen-wu Cao, Zheng Hu, Zhi-guo Zhang
      Biomedicine & Pharmacotherapy.2018; 97: 697.     CrossRef
    • Effect of photodynamic and laser therapy in the treatment of peri-implant mucositis: A systematic review
      Abdulaziz M. Albaker, Aws S. ArRejaie, Mohammed Alrabiah, Tariq Abduljabbar
      Photodiagnosis and Photodynamic Therapy.2018; 21: 147.     CrossRef
    • Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development
      Ana Paula Pinto, Isabela Bueno Rosseti, Moisés Lopes Carvalho, Bruna Graziele Marques da Silva, Carlos Alberto-Silva, Maricilia Silva Costa
      Photodiagnosis and Photodynamic Therapy.2018; 21: 182.     CrossRef
    • Physicochemical properties of liposome-incorporated 2-(morpholin-4-yl)ethoxy phthalocyanines and their photodynamic activity against oral cancer cells
      Paulina Skupin-Mrugalska, Wojciech Szczolko, Piotr Gierlich, Krystyna Konopka, Tomasz Goslinski, Jadwiga Mielcarek, Nejat Düzgüneş
      Journal of Photochemistry and Photobiology A: Chemistry.2018; 353: 445.     CrossRef
    • Applications of functionalized nanomaterials in photodynamic therapy
      Olayemi J. Fakayode, Ncediwe Tsolekile, Sandile P. Songca, Oluwatobi S. Oluwafemi
      Biophysical Reviews.2018; 10(1): 49.     CrossRef
    • Photodynamic therapy and diagnosis: Principles and comparative aspects
      Jane Dobson, Genilson Fernandes de Queiroz, Jon P. Golding
      The Veterinary Journal.2018; 233: 8.     CrossRef
    • Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei
      Bruna Graziele Marques da Silva, Moisés Lopes Carvalho, Isabela Bueno Rosseti, Stella Zamuner, Maricilia Silva Costa
      Lasers in Medical Science.2018; 33(5): 983.     CrossRef
    • Trifluoromethyl Boron Dipyrromethene Derivatives as Potential Photosensitizers for Photodynamic Therapy
      Jian-Yong Liu, Peng-Zhen Zhou, Jia-Lin Ma, Xiao Jia
      Molecules.2018; 23(2): 458.     CrossRef
    • A threshold dose distribution approach for the study of PDT resistance development
      Clara Maria Gonçalves de Faria, Natalia Mayumi Inada, José Dirceu Vollet-Filho, Vanderlei Salvador Bagnato
      Journal of Photochemistry and Photobiology B: Biology.2018; 182: 85.     CrossRef
    • Antimicrobial Photodynamic therapy enhanced by the peptide aurein 1.2
      Laura Marise de Freitas, Esteban Nicolás Lorenzón, Norival Alves Santos-Filho, Lucas Henrique de Paula Zago, Marciana Pierina Uliana, Kleber Thiago de Oliveira, Eduardo Maffud Cilli, Carla Raquel Fontana
      Scientific Reports.2018;[Epub]     CrossRef
    • Efficacy of photodynamic therapy or low level laser therapy against steroid therapy in the treatment of erosive-atrophic oral lichen planus
      Sana Mirza, Navedur Rehman, Ali Alrahlah, Wa’ad Rafa Alamri, Fahim Vohra
      Photodiagnosis and Photodynamic Therapy.2018; 21: 404.     CrossRef
    • Synthesis of fluorescent CulnS2/ZnS quantum dots—porphyrin conjugates for photodynamic therapy
      Ncediwe Tsolekile, Vuyelwa Ncapayi, Sundararajan Parani, El Hadji Mamour Sakho, Mangaka C. Matoetoe, Sandile P. Songca, Oluwatobi S. Oluwafemi
      MRS Communications.2018; 8(2): 398.     CrossRef
    • Suppression of T24 human bladder cancer cells by ROS from locally delivered hematoporphyrin-containing polyurethane films
      Dohyun Kim, Mi Hee Lee, Min-Ah Koo, Byeong-Ju Kwon, Min Sung Kim, Gyeung Mi Seon, Seung Hee Hong, Jong-Chul Park
      Photochemical & Photobiological Sciences.2018; 17(6): 763.     CrossRef
    • Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials
      Gulinur Abdulrehman, Kaiyue Xv, Yuhua Li, Ling Kang
      Lasers in Medical Science.2018; 33(7): 1581.     CrossRef
    • Photodynamic therapy with chlorin-based photosensitizer at 405 nm: numerical, morphological, and clinical study
      Maria Shakhova, Daria Loginova, Alina Meller, Dmitry Sapunov, Natalia Orlinskaya, Andrey Shakhov, Alexander Khilov, Mikhail Kirillin
      Journal of Biomedical Optics.2018; 23(09): 1.     CrossRef
    • Photodynamic therapy – mechanisms, photosensitizers and combinations
      Stanisław Kwiatkowski, Bartosz Knap, Dawid Przystupski, Jolanta Saczko, Ewa Kędzierska, Karolina Knap-Czop, Jolanta Kotlińska, Olga Michel, Krzysztof Kotowski, Julita Kulbacka
      Biomedicine & Pharmacotherapy.2018; 106: 1098.     CrossRef
    • 131‐Oxophorbine protopheophorbide A from Ziziphus lotus as a novel mesenchymal‐epithelial transition factor receptor inhibitory lead for the control of breast tumor growth in vitro and in vivo
      Soumaya Souid, Heba E. Elsayed, Hassan Y. Ebrahim, Mohamed M. Mohyeldin, Abu Bakar Siddique, Habib Karoui, Khalid A. El Sayed, Khadija Essafi‐Benkhadir
      Molecular Carcinogenesis.2018; 57(11): 1507.     CrossRef
    • Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy
      Jingyao Sun, Semen Kormakov, Ying Liu, Yao Huang, Daming Wu, Zhaogang Yang
      Molecules.2018; 23(7): 1704.     CrossRef
    • Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles
      Padmanaban Sivakumar, Minjong Lee, Yoon-Seok Kim, Min Suk Shim
      Journal of Materials Chemistry B.2018; 6(30): 4852.     CrossRef
    • Effect of photodynamic therapy on the mechanical properties and bond strength of glass-fiber posts to endodontically treated intraradicular dentin
      Henrico Badaoui Strazzi Sahyon, Paloma Pereira da Silva, Murilo Silva de Oliveira, Luciano Tavares Angelo Cintra, João Eduardo Gomes-Filho, Paulo Henrique dos Santos, Gustavo Sivieri-Araujo
      The Journal of Prosthetic Dentistry.2018; 120(2): 317.e1.     CrossRef
    • Optical properties of silver nanoplates and perspectives for biomedical applications
      Sajid Farooq, Frederico Dias Nunes, Renato Evangelista de Araujo
      Photonics and Nanostructures - Fundamentals and Applications.2018; 31: 160.     CrossRef
    • Photodynamic Therapy for Metastatic Melanoma Treatment: A Review
      Channay Naidoo, Cherie Ann Kruger, Heidi Abrahamse
      Technology in Cancer Research & Treatment.2018;[Epub]     CrossRef
    • Arene Ruthenium Metalla-Assemblies with Anthracene Moieties for PDT Applications
      Marie Gaschard, Farzaneh Nehzat, Thomas Cheminel, Bruno Therrien
      Inorganics.2018; 6(3): 97.     CrossRef
    • Apoptosis and autophagy induced by DVDMs-PDT on human esophageal cancer Eca-109 cells
      Yin Shi, Boli Zhang, Xiaolan Feng, Fei Qu, Shuang Wang, Lijie Wu, Xiaobing Wang, Quanhong Liu, Pan Wang, Kun Zhang
      Photodiagnosis and Photodynamic Therapy.2018; 24: 198.     CrossRef
    • Functional Polymer Nanocarriers for Photodynamic Therapy
      Tuanwei Li, Lifeng Yan
      Pharmaceuticals.2018; 11(4): 133.     CrossRef
    • Effect of photodynamic therapy with (17R,18R)-2-(1-hexyloxyethyl)-2-devinyl chlorine E6 trisodium salt on pancreatic cancer cells in vitro and in vivo
      Yu-Jie Shen, Jia Cao, Fang Sun, Xiao-Lei Cai, Ming-Ming Li, Nan-Nan Zheng, Chun-Ying Qu, Yi Zhang, Feng Shen, Min Zhou, Ying-Wei Chen, Lei-Ming Xu
      World Journal of Gastroenterology.2018; 24(46): 5246.     CrossRef
    • HSA—Coated Magnetic Nanoparticles for MRI-Guided Photodynamic Cancer Therapy
      Petr Ostroverkhov, Alevtina Semkina, Victor Naumenko, Ekaterina Plotnikova, Raisa Yakubovskaya, Stepan Vodopyanov, Artem Abakumov, Alexander Majouga, Michael Grin, Vladimir Chekhonin, Maxim Abakumov
      Pharmaceutics.2018; 10(4): 284.     CrossRef
    • Photodynamic therapy monitoring with optical coherence angiography
      M. A. Sirotkina, L. A. Matveev, M. V. Shirmanova, V. Y. Zaitsev, N. L. Buyanova, V. V. Elagin, G. V. Gelikonov, S. S. Kuznetsov, E. B. Kiseleva, A. A. Moiseev, S. V. Gamayunov, E. V. Zagaynova, F. I. Feldchtein, A. Vitkin, N. D. Gladkova
      Scientific Reports.2017;[Epub]     CrossRef
    • Plant extracts as natural photosensitizers in photodynamic therapy: in vitro activity against human mammary adenocarcinoma MCF-7 cells
      Rigo Baluyot Villacorta, Kristine Faith Javier Roque, Giovanni Alarkon Tapang, Sonia Donaldo Jacinto
      Asian Pacific Journal of Tropical Biomedicine.2017; 7(4): 358.     CrossRef
    • Effects of photodynamic therapy with talaporfin sodium on squamous cell carcinoma and sarcoma cells
      Tomohiro Osaki, Yuki Kawase, Hiroshi Iseki, Shinji Kishimoto, Soko Ikuta, Yoshihiro Muragaki, Masamichi Yamashita, Kazuo Azuma, Yusuke Murahata, Takeshi Tsuka, Norihiko Itoh, Tomohiro Imagawa, Yoshiharu Okamoto
      Photodiagnosis and Photodynamic Therapy.2017; 18: 213.     CrossRef
    • Methylene blue-containing liposomes as new photodynamic anti-bacterial agents
      Giulia Boccalini, Luca Conti, Costanza Montis, Daniele Bani, Andrea Bencini, Debora Berti, Claudia Giorgi, Alessio Mengoni, Barbara Valtancoli
      Journal of Materials Chemistry B.2017; 5(15): 2788.     CrossRef
    • Functional manganese dioxide nanosheet for targeted photodynamic therapy and bioimaging in vitro and in vivo
      Seongchan Kim, Seong Min Ahn, Ji-Seon Lee, Tae Shik Kim, Dal-Hee Min
      2D Materials.2017; 4(2): 025069.     CrossRef
    • Lipid based nanocarriers system for topical delivery of photosensitizers
      Shadab Md, Shadabul Haque, Thiagarajan Madheswaran, Farrukh Zeeshan, Venkata Srikanth Meka, Ammu K. Radhakrishnan, Prashant Kesharwani
      Drug Discovery Today.2017; 22(8): 1274.     CrossRef
    • Fluorinated polymer–photosensitizer conjugates enable improved generation of ROS for anticancer photodynamic therapy
      Jaqueline D. Wallat, Kristen S. Wek, Paul L. Chariou, Bradley L. Carpenter, Reza A. Ghiladi, Nicole F. Steinmetz, Jonathan K. Pokorski
      Polymer Chemistry.2017; 8(20): 3195.     CrossRef
    • Biotinylated Chlorin and Its Zinc and Indium Complexes: Synthesis and In Vitro Biological Evaluation for Photodynamic Therapy
      Meden Isaac-Lam, Dewana Hammonds
      Pharmaceuticals.2017; 10(2): 41.     CrossRef
    • Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy
      María Julia Lamberti, María Florencia Pansa, Renzo Emanuel Vera, Martín Ernesto Fernández-Zapico, Natalia Belén Rumie Vittar, Viviana Alicia Rivarola, Jörn Karhausen
      PLOS ONE.2017; 12(5): e0177801.     CrossRef
    • Photodynamic therapy for malignant nasal tumors
      A. L. Klochikhin, V. V. Byrikhina, V. V. Gorokhov
      Rossiiskaya rinologiya.2017; 25(1): 46.     CrossRef
    • Development of Ce-doped TiO2 activated by X-ray irradiation for alternative cancer treatment
      Chun-Chen Yang, Yu-Jun Sun, Pei-Hsuan Chung, Wei-Yao Chen, Wojciech Swieszkowski, Weiming Tian, Feng-Huei Lin
      Ceramics International.2017; 43(15): 12675.     CrossRef
    • Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities
      Lei Shi, Yi-Yu Jiang, Tao Jiang, Wei Yin, Jian-Ping Yang, Man-Li Cao, Yu-Qi Fang, Hai-Yang Liu
      Molecules.2017; 22(7): 1084.     CrossRef
    • Thermosensitive micellar hydrogel for enhanced anticancer therapy through redox modulation mediated combinational effects
      Zhiyu Guan, Lijun Yang, Weiwei Wang, Jun Zhang, Jinjian Liu, Chunhua Ren, Shuo Wang, Yang Gao, Pingsheng Huang
      RSC Advances.2017; 7(55): 34755.     CrossRef
    • Physiological considerations acting on triplet oxygen for explicit dosimetry in photodynamic therapy
      Víctor Sánchez, María Paulina Romero, Sebastião Pratavieira, César Costa
      Photodiagnosis and Photodynamic Therapy.2017; 19: 298.     CrossRef
    • Chlorambucil labelled with the phenosafranin scaffold as a new chemotherapeutic for imaging and cancer treatment
      Beata Miksa, Malgorzata Sierant, Ewa Skorupska, Adam Michalski, Slawomir Kazmierski, Urszula Steinke, Artur Rozanski, Pawel Uznanski
      Colloids and Surfaces B: Biointerfaces.2017; 159: 820.     CrossRef
    • Folate-PEG Conjugates of a Far-Red Light-Activatable Paclitaxel Prodrug to Improve Selectivity toward Folate Receptor-Positive Cancer Cells
      Pritam Thapa, Mengjie Li, Radha Karki, Moses Bio, Pallavi Rajaputra, Gregory Nkepang, Sukyung Woo, Youngjae You
      ACS Omega.2017; 2(10): 6349.     CrossRef
    • Antibacterial photodynamic therapy with curcumin and Curcuma xanthorrhiza extract against Streptococcus mutans
      Hyung-Jung Lee, Si-Mook Kang, Seung-Hwa Jeong, Ki-Ho Chung, Baek-Il Kim
      Photodiagnosis and Photodynamic Therapy.2017; 20: 116.     CrossRef
    • Recent Progress in Near Infrared Light Triggered Photodynamic Therapy
      Kerong Deng, Chunxia Li, Shanshan Huang, Bengang Xing, Dayong Jin, Qingguang Zeng, Zhiyao Hou, Jun Lin
      Small.2017;[Epub]     CrossRef
    • Knowledge, behavior and attitudes of dental practitioners towards photodynamic therapy use in dental practice
      Fahim Vohra, Ishfaq A Bukhari, Saeed A Sheikh, Refal Albaijan, Abdul Hakeem Qureshi, Zaeem Arif, Zohaib Akram
      Photodiagnosis and Photodynamic Therapy.2017; 20: 221.     CrossRef
    • Inhibition of Laser-Induced Choroidal Neovascularization by Hematoporphyrin Dimethylether-Mediated Photodynamic Therapy in Rats
      Yi-Jia Yan, Lei-Lei Bao, Li-Jun Zhang, Jun Bian, Tai-shan Hu, Mei-zhen Zheng, Dan-Ye Chen, Xin-hai Yu, Zhi-Long Chen
      Biological & Pharmaceutical Bulletin.2017; 40(12): 2088.     CrossRef
    • Fungicidal effect of combined nano TiO2 with erythrosine for mediated photodynamic therapy on Candida albicans: an in vitro study
      Aroon Teerakapong, Teerasak Damrongrungruang, Sajee Sattayut, Noppawan Phumala Morales, Angkhana Sangpanya, Manuswee Tanapoomchai
      Lasers in Dental Science.2017; 1(2-4): 101.     CrossRef
    • Maltotriose Conjugation to a Chlorin Derivative Enhances the Antitumor Effects of Photodynamic Therapy in Peritoneal Dissemination of Pancreatic Cancer
      Akihisa Kato, Hiromi Kataoka, Shigenobu Yano, Kazuki Hayashi, Noriyuki Hayashi, Mamoru Tanaka, Itaru Naitoh, Tesshin Ban, Katsuyuki Miyabe, Hiromu Kondo, Michihiro Yoshida, Yasuaki Fujita, Yasuki Hori, Makoto Natsume, Takashi Murakami, Atsushi Narumi, Aki
      Molecular Cancer Therapeutics.2017; 16(6): 1124.     CrossRef
    • Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate
      Tomohiro Osaki, Inoru Yokoe, Yoshihiro Uto, Masahiro Ishizuka, Toru Tanaka, Nobuyasu Yamanaka, Tsukasa Kurahashi, Kazuo Azuma, Yusuke Murahata, Takeshi Tsuka, Norihiko Ito, Tomohiro Imagawa, Yoshiharu Okamoto
      Ultrasonics Sonochemistry.2016; 28: 161.     CrossRef
    • Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin
      Tomohiro Osaki, Misato Ono, Yoshihiro Uto, Masahiro Ishizuka, Tohru Tanaka, Nobuyasu Yamanaka, Tsukasa Kurahashi, Kazuo Azuma, Yusuke Murahata, Takeshi Tsuka, Norihiko Ito, Tomohiro Imagawa, Yoshiharu Okamoto
      Ultrasonics.2016; 67: 76.     CrossRef
    • Fluorescence guided resection (FGR): A primer for oncology
      Ron R. Allison
      Photodiagnosis and Photodynamic Therapy.2016; 13: 73.     CrossRef
    • Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy
      Tilahun Ayane Debele, Shewaye Lakew Mekuria, Shuian-Yin Lin, Hsieh-Chih Tsai
      RSC Advances.2016; 6(18): 14692.     CrossRef
    • Synthesis, characterization and biological evaluation of a novel biscarboxymethyl-modified tetraphenylchlorin compound for photodynamic therapy
      Pingyong Liao, Xianghua Zhang, Lijun Zhang, Xinrong Wang, Wei Zhu, Jingjian Sun, Yijia Yan, Lixin Zhang, Na Chen, Zhilong Chen
      RSC Advances.2016; 6(31): 26186.     CrossRef
    • Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents
      Tilahun Ayane Debele, Shewaye Lakew Mekuria, Hsieh-Chih Tsai
      Materials Science and Engineering: C.2016; 68: 964.     CrossRef
    • Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review
      Giovana Calixto, Jéssica Bernegossi, Laura De Freitas, Carla Fontana, Marlus Chorilli
      Molecules.2016; 21(3): 342.     CrossRef
    • Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy
      Letícia Costa, Joana Silva, Sofia Fonseca, Cláudia Arranja, Ana Urbano, Abilio Sobral
      Molecules.2016; 21(4): 439.     CrossRef
    • The enhancing effect of a laser photochemotherapy with cisplatin or zolendronic acid in primary human osteoblasts and osteosarcoma cells in vitro
      Paul Günther Baptist Heymann, Thomas Ziebart, Peer Wolfgang Kämmerer, Robert Mandic, Akram Saydali, Andreas Braun, Andreas Neff, Guy Florian Draenert
      Journal of Oral Pathology & Medicine.2016; 45(10): 803.     CrossRef
    • Determination of the threshold dose distribution in photodynamic action from in vitro experiments
      Clara Maria Gonçalves de Faria, Natalia Mayumi Inada, Cristina Kurachi, Vanderlei Salvador Bagnato
      Journal of Photochemistry and Photobiology B: Biology.2016; 162: 168.     CrossRef
    • Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo
      Laura De Freitas, Giovana Calixto, Marlus Chorilli, Juçaíra Giusti, Vanderlei Bagnato, Nikolaos Soukos, Mansoor Amiji, Carla Fontana
      International Journal of Molecular Sciences.2016; 17(5): 769.     CrossRef
    • Developing a dermatological photodiagnosis system by optical image analyses and in vivo study
      Chung-Hsing Chang, Yu-Hsuan Lin, Cheng-Ru Li, Chun-Ming Chang, Chih-Wei Hung, Han-Chao Chang
      Photodiagnosis and Photodynamic Therapy.2016; 15: 100.     CrossRef
    • Functional organic nanoparticles for photodynamic therapy
      Lei-Lei Rui, Hong-Liang Cao, Yu-Dong Xue, Li-Chao Liu, Lei Xu, Yun Gao, Wei-An Zhang
      Chinese Chemical Letters.2016; 27(8): 1412.     CrossRef
    • Resistencias al tratamiento no quirúrgico en cáncer cutáneo no melanoma. Parte II: terapia fotodinámica, vismodegib, cetuximab, metotrexato intralesional y radioterapia
      T. Gracia-Cazaña, N. Salazar, A. Zamarrón, M. Mascaraque, S.R. Lucena, Á. Juarranz
      Actas Dermo-Sifiliográficas.2016; 107(9): 740.     CrossRef
    • Nonpigmented hair removal using photodynamic therapy in animal model
      Hyoseung Shin, Ji‐Seon Yoon, Wooseok Koh, Jin Yong Kim, Chang‐Hyun Kim, Kang Min Han, Eo Jin Kim, Ohsang Kwon
      Lasers in Surgery and Medicine.2016; 48(8): 748.     CrossRef
    • The potential of photodynamic therapy (PDT)—Experimental investigations and clinical use
      Anna Oniszczuk, Karolina A. Wojtunik-Kulesza, Tomasz Oniszczuk, Kamila Kasprzak
      Biomedicine & Pharmacotherapy.2016; 83: 912.     CrossRef
    • Chloro-aluminium phthalocyanine loaded in ultradeformable liposomes for photobiology studies on human glioblastoma
      E. P. O. Silva, L. P. Franchi, A. C. Tedesco
      RSC Advances.2016; 6(83): 79631.     CrossRef
    • Resistance of Nonmelanoma Skin Cancer to Nonsurgical Treatments. Part II: Photodynamic Therapy, Vismodegib, Cetuximab, Intralesional Methotrexate, and Radiotherapy
      T. Gracia-Cazaña, N. Salazar, A. Zamarrón, M. Mascaraque, S.R. Lucena, Á. Juarranz
      Actas Dermo-Sifiliográficas (English Edition).2016; 107(9): 740.     CrossRef
    • PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro
      Hsin-I Hung, Oliver J. Klein, Sam W. Peterson, Sarah R. Rokosh, Sam Osseiran, Nicholas H. Nowell, Conor L. Evans
      Scientific Reports.2016;[Epub]     CrossRef
    • Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors
      Xuying Ye, Huijuan Yin, Yu Lu, Haixia Zhang, Han Wang
      Molecules.2016; 21(10): 1347.     CrossRef
    • Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo
      Li-Jun Zhang, Yi-Jia Yan, Ping-Yong Liao, Davor Margetic, Li Wang, Zhi-Long Chen
      Tumor Biology.2016; 37(5): 6923.     CrossRef
    • CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells
      Si-Jia He, Jia Cao, Yong-Sheng Li, Jia-Chun Yang, Min Zhou, Chun-Ying Qu, Yi Zhang, Feng Shen, Ying Chen, Ming-Ming Li, Lei-Ming Xu
      World Journal of Gastroenterology.2016; 22(21): 5012.     CrossRef
    • A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis
      Hirotada Nishie, Hiromi Kataoka, Shigenobu Yano, Jun-ichi Kikuchi, Noriyuki Hayashi, Atsushi Narumi, Akihiro Nomoto, Eiji Kubota, Takashi Joh
      Oncotarget.2016; 7(45): 74259.     CrossRef
    • Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand
      Manal Amoury, Dirk Bauerschlag, Felix Zeppernick, Verena von Felbert, Nina Berges, Stefano Di Fiore, Isabell Mintert, Andreas Bleilevens, Nicolai Maass, Karen Bräutigam, Ivo Meinhold-Heerlein, Elmar Stickeler, Stefan Barth, Rainer Fischer, Ahmad Fawzi Hus
      Oncotarget.2016; 7(34): 54925.     CrossRef
    • Fluorescence imaging for photodynamic therapy of non-melanoma skin malignancies – A retrospective clinical study
      Sergey Gamayunov, Ilya Turchin, Ilya Fiks, Kseniya Korchagina, Mikhail Kleshnin, Natalya Shakhova
      Photonics & Lasers in Medicine.2016; 5(2): 101.     CrossRef
    • Nanoparticles in Photodynamic Therapy
      Sasidharan Swarnalatha Lucky, Khee Chee Soo, Yong Zhang
      Chemical Reviews.2015; 115(4): 1990.     CrossRef
    • Antitumor effects evaluation of a novel porphyrin derivative in photodynamic therapy
      Jian-Wei Li, Zhong-Ming Wu, Davor Magetic, Li-Jun Zhang, Zhi-Long Chen
      Tumor Biology.2015; 36(12): 9685.     CrossRef
    • Photodynamic Therapy Using Novel Zinc Phthalocyanine Derivatives and a Diode Laser for Superficial Tumors in Experimental Animals
      Tohru Obata, Satoru Mori, Yuka Suzuki, Takuto Kashiwagi, Etsuko Tokunaga, Norio Shibata, Motohiro Tanaka
      Journal of Cancer Therapy.2015; 06(01): 53.     CrossRef
    • A Luminescent Poly(amidoamine)–Iridium Complex as a New Singlet-Oxygen Sensitizer for Photodynamic Therapy
      Daniela Maggioni, Marco Galli, Laura D’Alfonso, Donato Inverso, Maria Vittoria Dozzi, Laura Sironi, Matteo Iannacone, Maddalena Collini, Paolo Ferruti, Elisabetta Ranucci, Giuseppe D’Alfonso
      Inorganic Chemistry.2015; 54(2): 544.     CrossRef
    • Clinical use of photodynamic therapy in ocular tumors
      Eren Cerman, Osman Çekiç
      Survey of Ophthalmology.2015; 60(6): 557.     CrossRef
    • Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP
      Shang-Ru Tsai, Rui Yin, Ying-Ying Huang, Bor-Ching Sheu, Si-Chen Lee, Michael R. Hamblin
      Photodiagnosis and Photodynamic Therapy.2015; 12(1): 123.     CrossRef
    • Sonodynamic action of hypocrellin B on biofilm-producing Staphylococcus epidermidis in planktonic condition
      Xinna Wang, Albert Wingnang Leung, Heyu Hua, Chuanshan Xu, Margaret Ip
      The Journal of the Acoustical Society of America.2015; 138(4): 2548.     CrossRef
    • Evaluation of a bacteriochlorin-based photosensitizer’s anti-tumor effect in vitro and in vivo
      Li-Jun Zhang, Donal O’Shea, Chun-Ye Zhang, Yi-Jia Yan, Li Wang, Zhi-Long Chen
      Journal of Cancer Research and Clinical Oncology.2015; 141(11): 1921.     CrossRef
    • Drug Carrier for Photodynamic Cancer Therapy
      Tilahun Debele, Sydney Peng, Hsieh-Chih Tsai
      International Journal of Molecular Sciences.2015; 16(9): 22094.     CrossRef
    • A Novel Photodynamic Therapy Targeting Cancer Cells and Tumor-Associated Macrophages
      Noriyuki Hayashi, Hiromi Kataoka, Shigenobu Yano, Mamoru Tanaka, Kazuhiro Moriwaki, Haruo Akashi, Shugo Suzuki, Yoshinori Mori, Eiji Kubota, Satoshi Tanida, Satoru Takahashi, Takashi Joh
      Molecular Cancer Therapeutics.2015; 14(2): 452.     CrossRef
    • Antitumor Effect of Sinoporphyrin Sodium‐Mediated Photodynamic Therapy on Human Esophageal Cancer Eca‐109 Cells
      Jianmin Hu, Xiaobing Wang, Quanhong Liu, Kun Zhang, Wenli Xiong, Chuanshan Xu, Pan Wang, Albert Wingnang Leung
      Photochemistry and Photobiology.2014; 90(6): 1404.     CrossRef
    • Photochemotherapy using natural anthraquinones: Rubiadin and Soranjidiol sensitize human cancer cell to die by apoptosis
      Natalia Belen Rumie Vittar, Laura Comini, Ivana Maria Fernadez, Elizabeth Agostini, Susana Nuñez-Montoya, Jose Luis Cabrera, Viviana Alicia Rivarola
      Photodiagnosis and Photodynamic Therapy.2014; 11(2): 182.     CrossRef
    • Ascorbic Acid Synergistically Potentiates Phloxine B‐induced Photocytotoxicity in Human Acute Promyelocytic Leukemia Cells
      Hang Qi, Qian Wu, Naomi Abe, Shunya Saiki, Beiwei Zhu, Yoshiyuki Murata, Yoshimasa Nakamura
      Journal of Biochemical and Molecular Toxicology.2014; 28(4): 167.     CrossRef
    • Photodynamic effect of Radachlorin on nerve and glial cells
      M.A. Neginskaya, E.V. Berezhnaya, M.V. Rudkovskii, S.V. Demyanenko, A.B. Uzdensky
      Photodiagnosis and Photodynamic Therapy.2014; 11(3): 357.     CrossRef
    • Photodynamic Therapy: Oncologic Horizons
      Ron R Allison
      Future Oncology.2014; 10(1): 123.     CrossRef
    • Extra cellular pH influences uptake and photodynamic action of pyropheophorbide-a entrapped in folate receptor targeted organically modified silica nanoparticle
      Surya Prakash Singh, Mrinalini Sharma, Harishankar Patel, Pradeep Kumar Gupta
      Photodiagnosis and Photodynamic Therapy.2014; 11(2): 156.     CrossRef
    • Laser-enhanced cytotoxicity of zoledronic acid and cisplatin on primary human fibroblasts and head and neck squamous cell carcinoma cell line UM-SCC-3
      Paul G.B. Heymann, Robert Mandic, Peer W. Kämmerer, Frank Kretschmer, Akram Saydali, Andreas Neff, Florian G. Draenert
      Journal of Cranio-Maxillofacial Surgery.2014; 42(7): 1469.     CrossRef
    • Novel amphiphilic cationic porphyrin and its Ag(II) complex as potential anticancer agents
      Artak Tovmasyan, Nelli Babayan, David Poghosyan, Kristine Margaryan, Boris Harutyunyan, Rusanna Grigoryan, Natalia Sarkisyan, Ivan Spasojevic, Suren Mamyan, Lida Sahakyan, Rouben Aroutiounian, Robert Ghazaryan, Gennadi Gasparyan
      Journal of Inorganic Biochemistry.2014; 140: 94.     CrossRef
    • Preclinical Validation of Talaporfin Sodium-Mediated Photodynamic Therapy for Esophageal Squamous Cell Carcinoma
      Shinya Ohashi, Osamu Kikuchi, Mihoko Tsurumaki, Yukie Nakai, Hiroi Kasai, Takahiro Horimatsu, Shin'ichi Miyamoto, Akira Shimizu, Tsutomu Chiba, Manabu Muto, Michael Hamblin
      PLoS ONE.2014; 9(8): e103126.     CrossRef
    • Evaluation of photodynamic therapy in adhesion protein expression
      CRISTINA PACHECO-SOARES, MAIRA MAFTOU-COSTA, CAROLINA GENÚNCIO DA CUNHA MENEZES COSTA, ANDREZA CRISTINA DE SIQUEIRA SILVA, KAREN C.M. MORAES
      Oncology Letters.2014; 8(2): 714.     CrossRef
    • Progress of photodynamic therapy applications in the treatment of musculoskeletal sarcoma (Review)
      XIANGHONG ZHANG, TANG LIU, ZHIHONG LI, XIANGSHENG ZHANG
      Oncology Letters.2014; 8(4): 1403.     CrossRef
    • Photodynamic therapy in treatment of cutaneous and choroidal melanoma
      Aleksandra Kawczyk-Krupka, Andrzej M. Bugaj, Wojciech Latos, Katarzyna Zaremba, Aleksander Sieroń
      Photodiagnosis and Photodynamic Therapy.2013; 10(4): 503.     CrossRef
    • Successful treatment of recalcitrant folliculitis barbae and pseudofolliculitis barbae with photodynamic therapy
      Jon Erik Fraes Diernaes, Anette Bygum
      Photodiagnosis and Photodynamic Therapy.2013; 10(4): 651.     CrossRef
    • Liposomal temocene (m-THPPo) photodynamic treatment induces cell death by mitochondria-independent apoptosis
      Jorge Soriano, María García-Díaz, Margarita Mora, Maria Lluïsa Sagristá, Santi Nonell, Angeles Villanueva, Juan Carlos Stockert, Magdalena Cañete
      Biochimica et Biophysica Acta (BBA) - General Subjects.2013; 1830(10): 4611.     CrossRef
    • Revue Panoramique de la PDT Principe, photo-sensibilisateurs, sources de lumières et indications validées en dermatologie
      N. Basset-Seguin
      Annales de Dermatologie et de Vénéréologie.2013; 140: 223.     CrossRef
    • Photodynamic therapy with new sublingual sensitiser Photosoft®E4 for cancer: a case series
      Karin Ried, Avni Sali, Michelle Wang, Brian Meade, Donald Murphy
      F1000Research.2013; 2: 161.     CrossRef
    • Photosensitizer Used in Clinical Photodynamic Thearpy for Cancer

      Chinese Journal of Applied Chemistry.2013; 30(12): 1386.     CrossRef

    • PubReader PubReader
    • ePub LinkePub Link
    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Photodynamic Therapy (PDT): PDT Mechanisms
      Clin Endosc. 2013;46(1):24-29.   Published online January 31, 2013
      Close
    • XML DownloadXML Download
    Photodynamic Therapy (PDT): PDT Mechanisms
    Photodynamic Therapy (PDT): PDT Mechanisms

    Photosensitizers in Pulmonary Photodynamic Therapy

    ALA, aminolevulinic acid; MACE, mono-L-aspartyl chlorine e6.

    Table 1 Photosensitizers in Pulmonary Photodynamic Therapy

    ALA, aminolevulinic acid; MACE, mono-L-aspartyl chlorine e6.


    Clin Endosc : Clinical Endoscopy Twitter Facebook
    Close layer
    TOP